Available online at www.sciencedirect.com
sanNCE@DlRECT@ JUURI‘{“-OF.
Approximation
Theory

ELSEVIER Journal of Approximation Theory 132 (2005) 4271 —
www.elsevier.com/locate/jat

Zeros of polynomials orthogonal on two arcs of the
unit circle”

A.L. Lukasho#?-1 F. Peherstorfér

AInstitut fur Analysis, Johannes Kepler Universitét Linz, A-4040 Linz, Austria
bpepartment of Mechanics and Mathematics, Saratov State University, 410012 Saratov, Russia

Received 5 December 2003; received in revised form 27 June 2004; accepted in revised form 27 October 2004

Communicted by Leonid Golinskii

Abstract

In this paper we study polynomialg’,) which are hermitian orthogonal on two arcs of the unit
circle with respect to weight functions which have square root singularities at the end points of the
arcs, an arbitrary nonvanishing trigonometric polynomiéliin the denominator and possible point
measures at the zeros.ef. First we give an explicit representation of the orthogonal polynonfials
in terms of elliptic functions. With the help of this representation for sufficiently latipe number of
zeros ofP, which are in are-neighbourhood of each of the arcs are determined. Finally, it is shown
that the accumulation points of the zerog Bf) which are not attracted to the support lie on a Jordan
arc running within the unit disk from one of the arcs to the other one. The accumulation points lie
dense on the Jordan arc if the harmonic measures of the arcs are irrational. If the harmonic measures
are rational then there is only a finite set of accumulation points on the Jordan arc.
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1. Introduction

Letd <1 < @y < @3 < @4 < d + 27 and put
E =[¢1, 921U l@3, @4l = E1U E2
and let
(z=€?:p € Ey=Tg =T, Ulg,.
Forn e Npg=1{0,1,2,...} let

(n/2]
— 2k , — 2k
I = Zakcos 1 @ | + bisin ! @ | :ak, by € R
= 2 2

denote the space of real trigopnometric polynomials of (integer or half-integer) degree no
more thamm /2. We sayD < I, ;> is of exact degre€D = n/2, if |ag| + |bo| # 0. By

R e II, we denote the trigonometric polynomial which vanishes at the endpoints of the
two arcs, i.e.,

4
_ P = P
R(p) = 1_[ sin — 1)
k=1
and let
R(p) = V(@)W(p) (2

be an arbitrary splitting oR with V, W € I1, .
Loosely speaking we study polynomials which are orthogonal on the twd arof the
unit circle with respect to a distribution of the form

VIW(@) |/ A(p)/|V(@)| dp + possible point measures at the zeros 6fA,

whereA(¢) is a real trigonometric polynomial which has no zerogiand satisfies some

other mild conditions, see (4) below, also concerning the precise form of the point measures.

(In fact even more general distributions including sign changing ones are considered).
First we give an explicit representation of the orthogonal polynomials in terms of elliptic

functions and show how this representation can be used also to obtain trigonometric polyno-

mials minimal on two intervals with respect to a weight function of the typg|H]. Then

we emphasize on the zeros of the orthogonal polynomials. Let us recall that it is known by

Fejer's Theorem on zeros of minimal polynomipd$ that all zeros ofP, lie in the convex

hull of I'g (in fact, strictly inside, by Saff26]) and that they are attracted to the support up

to a finite number (Widom'’s theorefB3]). Furthermore, it is known (see e[86, Theorem

5.2],[27]) that the zero distribution @fP,,) converges weakly to the equilibrium distribution

of I'g, i.e.

1
- z : 53_/11 VIgs (3)
n 4 1 n—o00

j=
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whered;; , denotes, as usual, the Dirac-delta measure at the pojrandv, the equilib-
rium measure of .

Naturally we would like to know the precise number of the zeropfattracted to
each of the two arcs and what about the zeros which are not attracted to the support.
Concerning the first question we present a formula for the precise number of zeros which
are in ans-neighbourhood of each of the arcs for sufficiently lang&hen the behaviour
of the accumulation points of the zeros(@,) not attracted to the support is investigated.

It is shown that they lie on an open analytic arc with endpoints which are inner points
of I'g,;, respectively, and can be given explicitly, see (94) below. Furthermore, the set of
accumulation points is dense on this curve if the harmonic measures of the arcs are irrational.
If the harmonic measures are rational then the set of accumulation points of zeros on the
analytic arc is finite. The last case is known alre§2ly, Theorem 3.3}vhen one takes

into consideration the known fact that the reflection coefficients are pseudoperiodic if and
only if the harmonic measures are rational (8% and concerning pseudoperiodicjiyl,
Theorem 1(a)]).

Let us note that the behaviour of zeros of polynomials orthogonal on the whole unit circle
is very different from that one in the two arcs case. Indeed, it is well known in the case of the
whole unit circumference zeros need not be attracted to the support as the simple example
P, (z) = 7" shows. Let us mention also that in the case of one arc, under the assumption
that the weight function is sufficiently nice, the reflection coefficients converge and thus
there is always at most one point (which can be deduced f2df) to which zeros may be
attracted if they are not attracted to the support.

Using the fact that weight functions of the forfiV|/ f /]V] onE and zero otherwise can
be approximated well by weightg]W]/A,.+/V] treated in this paper it can be shown using
Tomcuk’s asymptotic approadB2] (compare als§34]) that the polynomials orthogonal
with respect to the above weights are asymptotically equal and that the behaviour of the
zeros is the same also, that is, is such as described in this paper. This will be demonstrated
in a forthcoming papefl3]. At this point let us mention that asymptotic representations
of polynomials orthogonal on two arcs of the unit circle can be obtained also from the
very general and nice results of WiddB4]. To extract the behaviour of the zeros of the
orthogonal polynomials his results seem to be not explicit enough (corifjanéth this
respect also).

Let us mention that by Stahl and Toflk7, Theorem 2.1.3here exists measures such that
the set of accumulation points of the zerog Bf) is dense in the convex hull. For measures
whose support is the unit-circumference which have the property that the accumulation
points of the zeros are densdih < 1, so-called Turan measures, see the recent discussions
in [8,25]. The results of this paper should be compared with the results on the zeros of
polynomials orthogonal on two intervals-1,a] U [b,1], -1 < a < b < 1, where a
similar behaviour of the zeros has been observed by the second fi6hooncerning the
number of zeros in the intervdls-1, a], [b, 1] and the denseness of zeros in the gap].

In the meantime these results have been extended to several inféRjakee als¢28, p.
92] for denseness results under certain assumptions.

There is also a vast literature dedicated to similar questions about zeros of nonhermitian
orthogonal polynomials or more generally of denominators of Padé-approximants. With
this respect we refer to the survi8] and the recent papef3,10].
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2. Notations—Examples

Henceforth letA(p) € I = U2, II; be an arbitrary real trigonometric polynomial
which has no zeros ift, i.e.,

A(p) #0 for ¢ € E 4
and thusA can be represented in the form
m* m;
_ =&\
A =ca[] (sin ®5°) ©)

wherem*, m; € N and where the ;’s are distinct, lie inC \ £ and for; ¢ R there exists
ag =& withmy =m.

As announced in this paper we study polynomigjsorthogonal with respect to the
functional£L(-; A, W, 1), i.e.

Lz *P)=0 for k=0,...,n—1, (6)
where the functional is given as follows:
1 4
L AW = o [ hEN) Fpi A W) A+ Glh AW, D, @)
E
with
W)
fww¢m0={ R (®)
0, o ¢E
and
1 m* mj—1 h(z)
) ) (v z
Gl AW, 0y = 53 (L=0p) 3 iy, (=1)'5f) (7) C)
j=1 v=0
where
1 (—1)J

= j=12 (10)

r@ " /IR
they; ,'s are certain complex numbers (for their exact description see (14) below) depending
on A, WandR, z; :=€% € C\ I'g, 8 (g) :== (=1)"g™ (z;)/v! and
A= (1,..., m+), WithZ; € {=1,1} andsuchthat;, =i,
for &;, = &, (11)
The functionalZ(-; A, W, 1) was introduced ii19] for an arbitrary number of arcs even.

Naturally the functional need not be positive definite. As usual we call a functi®nal
positive-definite, if de(ch_k)’;’k:o > 0 for alln € Np, where the moments; are given

by ¢; = L(z7/),j € Z. Note thatL is positive definite iff has no sign change d&
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andm; = 1forall j € {1,...,m*} for which 1, = —1. Forow = 0V — 2,4 =
and L positive definite we obtain weights studied by Tomch8R]. For other studies of
polynomials orthogonal with respect 1 see alsd6,23]. If £ is not positive definite we
may have higher orthogonality @f,, indeed we may have

Lz *P,) =0 fork=0,....n+u—1 peN.

As we shall see (Corollargto Theoren® below, compare alsfd.2, Theorem 1]) this case
of maximal orthogonality is of interest in describing rational trigonometric functions which
deviate least from zero on the two intervéls U E».

Let us give two examples, the first one related to the positive definite case and the second
one related to higher orthogonality.

Example 1. Suppose thatl has only real zeros and exactly one simple zero in each interval
(@2j P2j+1),J = 1,2, @5 := 1 + 2m, i.€.

(o= (9—C
A((p)_sm< 5 )sm( 5 )

where¢; € (¢y;, ¢2j41)- Then for the weightf (¢; A, 1) the orthogonality condition (6)
takes the form, by inserting the explicit expressionsifpg given in (14),

/ R E) Z (1- /1,) R(e<)e TS Py (@)
EA@)IVIR(@)] i (diA> (€))
fork =0,...,n—1,whereR(€?) := e29R(p)andA(d?) := €? A(¢p). Recallthatly, 1>

can be chosen arbitrary frofa-1, 1}. Relation (12) represents an orthogonality relation for
P, with respect to a positive measurewhich has mass points at those'avhere/; = —1.

-0 (12

Example 2. If there exists a-polynomialTy on E (se€g[20]), then it is orthogonal with
respect to the sign-changing weighte; 1, 1), namely,

L(z*Ty:1,1,1)=0 for k=0,...,N

and denoting by, |z| = 1, the leading coefficient ok, the trigonometric polynomial
Ty (p) = e 1N/20T (%) deviates least from zero di with respect to the sup-norm
among all trigonometric polynomials of degr#e/2 with leading coefficients 2 casand
2 siny, whereq = eV,

In the following we need the additional notations: &t denote the set of algebraic
polynomials of degree, let A(z) be the algebraic polynomial which is connected with
A(p) by the relation

A(E?) = 9 A(g), (13)
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where 2 = 204 =", m;. i.e.

A(z) =ca l_[(z —z;)",

j=1

withcy € C, z; = eif./,j =1,...,m* and allz; are distinct, and fofz;| # 1 there
existsk such thatzy = 1/z;, my = mj. The polynomialA coincides with its reciprocal
polynomial

A*(z) = 22A)7),

i.e.itis selfreciprocal. Furthermor®, V, W are algebraic polynomials of degree24, 2w
correspondingly, which can be obtained frgt V), W in an analogous way to (13},
denotes the number of zeros)dfon (g1, ¢5;1, j = 1,2,

A(2)
(z—z;)™
and we make the additional suppositior- w + 1 € No.

Now we can describe more precisely the functigi@l; A, W, 1) from (9). Namely,

m* (mj=1)

47YWh
§ ; 14
< _1>' ( iAjﬁ> @) ()

Aj(z) =

Ghy AW, ) =

NIH

_ (m;j=1)
1 9 TYWh
Ky = i i (zj),
(mj—1-=W!\iA;vR

where here and everywhere later {#\& the branch ot \ I'z is denoted which satisfies

argy R(€9) = arg(—e?), ¢ € (¢,. ¢3). (15)
In the case whem; =1, j = 1,..., m", the functionall is nothing else as the Stieltjes

integral with respect to the measure with absolute continuousfgartA, W)de and with
possible addition of masses at the points

So the main objects of investigation are the polynomiglswhich are orthogonal with
respect to the functiondl in the sense of (6). We shall use the notation

Lz*P)=0, ke (@©n-—1)

for (6). But if it is known thatZ(z ™" P,) # 0, then we shall writeC(z*P,) = 0,k €
O,n —1].

The following conformal mapping of a certain rectangle in the complex plane to the
exterior of ' will play a crucial role in the statement of our results. Let

K2 = (ei%’ eisf’z’ ei<P37 ei<04) (16)
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be the modulus of the exterior &%z, where

24—21 13—

(z1, 22, 23, 24) = (17)

4—722 73— 22

denotes the double relation between poitsz, z3, z4. The moduluk will be simultane-
ously the modulus of the Jacobian elliptic functions

snz =sNn(z; k), cnz=cn(z; k) =+1—sr’z
and

dnz = dn(z; k) = V1 — k2sréz

and letk = K (k) be the complete elliptic integral of the first kind of modukugefined by

1 dx
K =Kk) = . 18
“© fo\/(l—XZ)(l—kaZ) (18)

As usual let
K'=+v1—k? and K =K'(k)

denote the complementary modulus and the complete elliptic integral of the first kind
with respect ta’, respectively. Furthermore, in the following we assume without loss of
generality that

@1 =21 — g,

since it can be satisfied after a suitable turn of the unit circle, and such a turn corresponds
to a substitution of the kind — &¥z.
Next let us construct the conformal mapping from the (partly open) rectangle

O={ueC:—-K <Reu <0, —K' <Imu<K’)
to the exterior of '¢. In the following we shall use also the notation
O={ueC:-K<Re<0, —K' <Imu<K'}.

Since the conformal mapping(x) from [J to the exterior of two disjoint intervals say
[-1,0QU[f,1],-1 < a < B < 1is known to be (seld, p. 139],[5])

srfu crla + ¢ u sréa 1—0o?
) = TsRa T aeRa—sta) (19)
where
x=1-2srta (20)
and

p=2st(K +a)—1,
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we obtain the desired mappiag= ¢ («) easily by composition ofv with the Mobius map

w—itan & 1)
1=
- R
w+|tan71

which maps the upper half plane to the interior of the unit disk and the intgrvals:] U

[B, 1]to the arcd g, andl g,. Thus the function
2srfusin G e?2/2 4 (4 — 1)e91/?

2srtu sinGte192/2 + (o — 1)ei02/2’

z=¢) =

(22)

where

P1 P2
= —tan—= cot -2 = 1 — 2srfa,
o 2 2 a

P1 P3 crfa
= —tan—= cot —= =2 -

b 2 2 drea
realizes that map. It is an even elliptic function of order 2 with primitive periokisad

2iK’ and simple poles at( in the period parallelogram

1

P=Pk)={ueC:—-K<Reu <K, —K' <Imu<K'},
where( € [Jis defined by the relation
s P1+o i P2—P1
sin 21052 2
SIP{="—"2——
Sing, sin %
The points
z:€?71 5 d92 5 P35 @701 5 @01
correspond under the magu) to the points
u:0—- iK' - —-K+ik' - —-K -0

and the upper and lower halves of the open rectangle, that-i&, 0) x (0,iK’) and
(=K, 0) x (0, —iK"), are mapped onto the interior and exterior of the unit circumference,
respectively. Furthermore, we need the theta functibasdf defined by (see, for example,
[31])

=0

and

o0 .
0(z) = 04 (%) — 1423 (-1’ cos%z
j=1
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and related to each other by
H(Z + IK/) — ie_inZ/ZKq_l/49(Z),

whereq = e "X"/K Note thatH and@ is an odd and an even function, respectively. Both
are analytic at every point of the complex plane and are quasi doubly periodic functions,
that is, they satisfy the relations

H(z+2K)=-H(). HE+2K)=—-e"/Kg7 (), (23)

0(z+2K) = 0(z), 0(z+2iK') = —e"™/K471q(z). (24)

3. The basic results

The starting point of our investigations is the following characterization (due to the second
author and Steinbau§t9]) of the polynomials orthogonal with respect£g-; A, W, 1)
by a quadratic equation.

Lemma 1. LetL(-; A, W, 1) be given as abovégta — w + 1 € Np, and letu € {0, 1}.
Then forn >a + 1 + v the following assertions are equivalent:

(1) Lz P AW, A) =0forj e (0,n+p—1]
(2) there exists a polynomial, 422, € P,42_2, and there exists a polynomigl,,
P1_, with g(,y(0) # 0 such that
W(2)PA(2) = V(2) Qh 4o 0y(2) = " TP T A (D) g0 (2), (25)
wherep, 0< p <1, is the multiplicity of the zero aP, at z = 0 and that

(k)
(VQuiz-20® () = 25 (VRR) @),

fork=0,....mj—1; j=1,...,2m" (26)
VOnt2—2v

=2 =1, V(O)QF ., 5,(0) = /R()P0). 27
T ©0,1+2-2,(0 (O] (27)

The basic theorem for what follows is the next one.

Theorem 2. Letn>a +1+4+vandu € {0,1}.1f L(z/P,; A, W, ) =0for j € (0,n +
w— 1]then the polynomial®, and 0,122, from Lemmeél satisfy the following relations:

2W (2) PA(2) 3
=@t l=w A () gy (2)

1
1= E(?’n(cﬁ(u)) + Yu(=¢w))) (28)

and

2Py (VR Ony2-20(z) 1
=3 'Pn - an - 5 2
@ A(2) gon (2) 2( (¢(u)) (=) (29)




A.L. Lukashov, F. Peherstorfer / Journal of Approximation Theory 132 (2005) 42—-71 51

where

Hu+ C) :|n+wpa+1,uag(,l>

_oimm™u/K
¥, ((/J)(u)) =ce |:—H(u —9

H(u —|—Z n+w—p—a—14p ,* |:H(u i v ):|) jm;j
H(M—C) =1 H(M—U])
( b )) 5
H (u+ bV
" [m} | >

™ e, m"™ e 7, andd™ € {-1,0,1} (0™ = 0 < 0g(,) = 0) satisfy the system of
equations

mMWK' 4+ (2= 2u—0gu)Im{+ Y Zmjlmuv; + 5™ Imbp™ =0, (31)
j=1
(2n + 2w — 2a — Ogny — 2p)Re{ + Y A;m ;Rev; + 6™ Reb™ = —I,K, (32
j=1
wherel,, € N, and
¢ = (—1)%F, (). (33)
Here
W2(z) — V2(2)
Fy(z) =

W2(z) + V2(2)"

Proof. Let us consider the function

2
W (P + 73 Onvz-2.2))
Zn—&-p—(a+1 w)+,uA(Z)g(n) (Z)

'lyn (Z) = (34)

where Q,,42-2,(z) and g, (z) are the polynomials from Lemmha The function?,, is
meromorphic on the Riemann surfagef the functionw = +/R(z) (since it is a rational
function of the variables, 7). The Riemann surfacg is a compact Riemann surface of
genus 1, and the mappirdgz, ) — (z, —w) changes sheets 6f

The function

2
W@ (P~ 5 Onso )
Zn+p7(a+lfw)+uA(Z)g(n) (2)

lPl,n (2) = (35)

corresponds to the functidH,, under the mag.
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Applying the map = ¢(u), one obtains two function®,, (¢ («)) and¥1 ,(¢(u)) which
are well-defined on the rectandlé One can extend them onto the period parallelogram

P=Pk) ={ueC:—-K<Reu <K,—K' <Imu<K’}

by

def

W, (b(—) L Wy and Py (d(—u) Y W (pw)).

Then it is possible to extend them onto the whole planiey the double periodicity with
respect to X and '. Since both function®’,, and ¥, are rational functions of the
variablesw, z, they are meromorphic on the surfagelt is well known that the Jacobian
elliptic functions uniformize the surfac®, hence the function¥,, (¢ («)) and¥'1 ,(¢(u))
are elliptic.

Let us determine all zeros and polesiof(¢(u)). First, we conclude from (34), (35) and
(25) that

Yn(p)¥1n(dp) =1, (36)

hence ifu is a zero of?, (¢ («)) then—u is a pole of¥1 ,(¢(u)), and vice versa. Now
from (34) and (27)

(i) u = {(whichcorrespondsto = oo) is a pole of multiplicityn+w—p—a+1—u—0g)
of ¥, ($(u))

and by (36)

(i) u = —{is azero of multiplicityn + w — p —a + 1 — u — 0g(n) of ¥, (P (u)).

Moreover, by (34) and (27)

(i) u = isapole of?,(¢p(u)) of multiplicity n — p — (a +1— w) + p,

and by (36)

(iv) u = —{isazeroof,(¢(u)) of multiplicity n — p — (a + 1 — w) + p.

From (34), (36) and (26) it follows that

(V) u = v; is a zero (pole) of multiplicitym; of ¥,(¢(w)), if 1; = =1(+1),j =
1,...,m"%

(Vi) u = —v; is a zero (pole) of multiplicityn ; of ¥,(¢p)), if 1; = +1(=1),j =
1,..., m*.

Finally, for9g,) = 1,
(vii) u =b™ is a zero (pole) of?, (p(u)) if 6 = —1(+1),
(viii) u = —b™ is a pole (zero) ofP, (p(u)) if 8™ = —1(+1).

Hereb™ e O ands™ e {—1,1} are defined by
V(A(B™)) Qni2—20 (™)) = 6™/ R(G(DB™)) P, (p(B™)). (37)

Summing up (i)—(viii) we get by the Representation theorem for elliptic functions in terms
of theta functions (see, for examp[&, p. 54]) that?, (¢(u)) has a representation of the
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form

P, (p(u)) = [H(u + O}”““""“‘“‘agm [H(u + Z)]”““”“”“

Hu =0 H(u—0)
* NG
Hu+ ) - Hu+v;) Zjm H (M 4 b(n)) 0
0, 1 [H(M——UJJ [m . @9
(u _C ) j=1 J

Wherez(n) =(—2iWK —2mMiK’: | ;™ ¢ 7.

With the help of (23) one obtains from (38) the required representation (30) up to the
multiplicative constant.

Formulas (28), (29) together with

V@02, 2 1
Z”+1’_(“+1_w)A(Z)g(n)(Z) = E (,Pn((p(u)) - lPn(_(ﬁ(u))) s (39)

needed in the following and which is just a rewriting of (29) follow from (34), (35) and
(25).

Writing down the condition of ellipticity?,, (¢p(u + 2iK")) = ¥, (¢(u)) for ¥, from
(38) gives (31) and (32).

To compute the constant putz = 0 in (38). Then

P ((0)) = ) (— 1)t g o grim LK (g2, (40)
On the other hand, by (28)

¥, ($(0)) = P, (€91) = F,, (€7, (41)
hence by (40) and (41) equality (33) follows with

¢ = ™ (1) +m®” q(m(”))zenim(")C/K.

The caség(,) = 0 is considered in an analogous way.
Let us give another representation fof”). For that reason let us put= —K in (30)
and (28). Then

¥, (p(—K)) = c(~1y""
and
P, (H(—K)) = Fyy(€99).
So,
""" = (1% F,y (€91 F, (€%%) (42)

and thereforen™ is even (odd) for alk >a + 1+ v simultaneously. [
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Corollary 3. Letn>a + 1 + v. If the functional £ is positive definite then the monic
polynomialsP,, orthogonal with respect t@ have a representation of the form:

1

where

Hu+0\" Hu+5Mpm)
H(u -0 Hu+0

(H(u FOHu+ C))wja

gnk™u/K

Qu(u) =Cq,n (

X

l+/‘j 1’/”j

XH;"Zlej(z)(u + vj)Hmj< 2 )(u )
[T1521 Hu —uj)

: (44)

k™ = (m® —#uj:Imu; =K'})/2and

H"(2ilm{) H(2Re)) gk UK
H"(2)  H(+6™bp™) (H2Re)H(2))" ™

20 —u;
« HJ:l (C I/l]) i (45)

1-4;

[ Hmj<l+;j>(5+ vj)Hmj< 2./>(C —vj)

Co, = 2d(r+4bm

¢ = argH (). B
Furthermoreb™ e T, m™ e 7, anddé™ e {—1, 1} are given uniquely by the system
of equations

mWK +1m{+ Y K'Am; +6™Imbp™ =0, (46)
jelJ
m*
(2n 42w —2a — 1)Re{ + Y Jjm;Rev; + 6" Reb™ = —I,K, 47)
j=1

if 5™ e O, whereJ = {j : Imv; = K'}. If Reb™ = 0 or Reb™ = —K we may put
8™ = —1, which is done in the rest of the paper, and téh with — K’ < Im b™ < K,
m™ e 7,1, e N with I, — w, even, are given uniquely again i#6) and (47). Finally
the polynomial),, 422, can be represented as

1 L)
Qni2-20(90) = 3(20(w) = Q=)L (48)
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Proof. Let us define the functiof2,, (1), u € (1, as

V(pu))
W(pu))

where the polynomiaD,, . 22, is given by (25). Since the substitution—~ —u corresponds

Qn+2720(¢(l’{))5 (49)

V(o)
to the change of the branch 94W(¢(u)), we have

Vv
Qn(—u) = Pa(Ppu)) — W((i((u)))) On+2-20(Q(u)). (50)

Now formulas (43), (48) follow immediately from (49), (50).
Let us prove representation (44). From (34) and (49) it follows

W ()25 ()

v, = . ' N

P = a0 A () g (@) >

Further, applying the Representation theorem for elliptic functions one gets
H@u—vj)H@u +vj)\"

A(p()) = constl_[ ( Hu—-0OHu+{) ) >

(b — const T =PI+ b (53)
8 = Hu—-0OHu+{

—uj)Hu +uj)

W(p(u)) = CO”StH H(u -OHu+( ° Y
du) = const 24 = SLURY )

Hu—-OHu+{)
Substituting (34), (52)—(55) into (51) gives

r 2n n "
Q) Const|:H(”+o:| H" = b™)H" (4 b ™)
u)—=
n

Hu -0
(H(u+£)H(u+£)>2w 2
H2u + §)

1_[ HM WD ) HM A (e — v )
]_[] 1H(u—uJ)H(u—|—u/)

2 ) 1,(n)
= const (u+C) H (L_JT(S k)
H@u—0) gmnu/K

gmm®u/K
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(H A DH w4 0)2
H2(u + )
an}il Hmj(l-ﬁ-/lj)(u + vj)Hmj(l—/lj)(u _ Uj)
[1721 H2(u — u))
wherem™ = m™ —#{u; : Imu; = K'}. By the ellipticity of @, and by (56)7 ™ is even,
m™ =: 2k which implies (44) up to a constant multiplier.
To get (45) one needs to take into account the equality
1
. P . 5 (2, (u) + Q, (-
1= lim n(@) im 5(Qn(u) + Qn(—u))

I3 4 ¢ !

: (56)

and that the constant in (55) can be easily determined oy = €.

From definition (49) of the functio®, () it follows that it is a meromorphic function
of z = ¢(u) on the Riemann surfacg of the functiony/R(z). Then, as it is known,, (1)
is elliptic. Writing down the conditions of ellipticity fof2,, () gives, with the help of (23),
relations (46), (47) and that — wy is even.

Conversely, let conditions (46), (47) with even— wo be satisfied. Then the function

Q,(u), defined by (44), is elliptic. Hence it can be represente@iar/sﬁ—", wherep, g, r are
polynomials. From (44) it follows th&®,, as a function of has finite poles only at the zeros
of W, and of the same order, hende) = W(z). Multiplying ©,,(«) by Q,,(—u) gives

()~ RQ¢*@ _ (H(u ~DH@u+ Z))"

W2(2) "\ H@—DHW+0)
XH(M _ 5(n)b(”))H(u + 5(n)b(n))
Hu—0OH@u+0)
X(H(it —OHu+OHu—OH®@u+ )"
xl—[;n:l H™i(u—vj)H™i(u+v;)
H?ilH(u —uj)Hu+uj)
what is equal by (52)—(55) to

z”*“*”wA(z)g(n)(Z) _ pz(Z) — R(Z)qz(Z)

const
W(z) WZ(Z)
ie.,
_pZ(Z) — V(2)¢%(z) = const" "1 A(2) g (2) (7
W(z) 7 B o

Hencep(z) = P(2)W(z), whereP(z) is a polynomial. Finally we get

5 [ V(pu))
Q,(u) = P(p(u)) + WQ@(“))-
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By (44) Q,,(u) has a pole of multiplicit)n atu = {, andQ2,(—u) has a pole of multiplicity
w—a < natu =, henceP(¢p(u)) = 2(Q (u) + Q,(—u)) is a polynomial of degren.
Comparing the degrees in (57) gives thas a polynomial of degree + 2 — 2v. Putting
P, := P andQ,2_2, := ¢ (57) becomes

W(2)P2(2) — V()02 5 5,(2) = 2" T A@) gy (2),

whereg, is a polynomial of degree 1. Using representations (49), (50) and (44) one gets
after the substitutions = +v;, u = £+ the equalities

~ (k)
(VQn+272v> (zj)) =4; (\/—P ) (z;)
fork=0,....m; -1, j=1,...,2n%,
VQn+272v
VRP,
By Lemmal P, is orthogonal with respect t6. Since for a positive definite function4l

the orthogonal polynomials are unique up to a multiplicative constant, the uniqueness of
the solutions of systems (46) and (47) is proved]

=1, VOO, 2,0 =R(O0)P0).

z=0

Corollary 4. LetA(¢)beatrigonometric polynomiad € I1,, of form(5)whichis positive
on E and letv € N/2 be such that > a. Then the following assertions are equivalent.

(a) There exists a trigonometric polynomial
7,(p) = ACosvep + Bsinve + - --

with A, B, € R, A2 + B? # 0 such that

max Ty(@)
o<t | JA(g)

A cosvep + Bsinvg + b1 cose — 1)

VA()

s~ g+ -+ bycos(y — 2[3]) o + cwmsin( ~ 2[3)

VA()

= min
bi,cieR

(58)
and all boundary points of E are extremal points with

(92) _ T(9j41)
VA JA@ D)

(b) There exists a real trigonometric polynomigl 1 € I1,_1 and a real constant/, such
that

j=12 (59)

2(p) — R(9)a5_1(p) = MZA() (60)
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with
(&) = VRo-0(E), j=1,....m" (61)
(c) L(z7/P,; A, 1,1) =0for j € (0, n], where
P,(€?) :=€d"1,(p), n=2v.
(d) Forsomel, € N

*

(4v — 2a)Rel + > mjRev; = —,K (62)
j=1

holds.

If any of those assertions holds then the minimal polynomi@b) is given by the formula
M, —ive
T(p) = 7(F2v(u) + Foy(—u))e ", (63)

explip) = ¢u),

(64)

Foy(u) = ¢ glmmu/K (H(M+Z))2v 1_[’]721Hmj(1/l+vj)

Hu=0) (Hu+0Hw+D)"
ley| =1, m= %Z’J’il mjlmuv; € N.

Proof. The assertion is proved for the more general case of several arcs (with expressions
in terms of automorphic functions) {d2, Theorem 1]. We give a proof also here for the
sake of completeness.

a)=(b) Sinc 1 _sing cost—Del (for an integen) and
@=(b) VAW@) N/ Alg) A ( ger)
sing/2  cosp/2 cos(v—1)¢p -
{ JAo A JAw }(forahalf integew) are Chebyshev systems Brby the

Chebyshev Alternation theorem we get that+/A has at least 2— 2 alternation points
Y ; inthe interior of £.. Put

2v—2

av-1(p) =c [ ] sin((p —v;)/2) (65)

j=1

and note that%/A — M§ has a double zero atany poipf, j = 1, ..., 2v—2, and because
of (59) has a simple zero at any zero®®€p). Hence, for a suitable constanin (65),

@) o RO
Ay A(p)
i.e. (60) is proved.

’
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Furthermore, it follows from (60) that ifil, d + 27) \ E the inequality

[Ty (@)]
VA(@)

holds, hence the function
©(@) + Vi) — MPA(p) _ Fil(p)
M,\/A(p) VA(Q)

has orE modulus 1 and of?, d +2r) \ E modulus greater than 1. Furthermore, the function

> M,

(66)

Pa(@) +\ P2~ MPAQ) (o)
MyVAR) VAR

where Py, (z) := €"?1,(¢), z = €?, has also modulus 1 far € I'g. The functionF, is
algebraic and has no finite poles, it has as branch polfits 2= 1, 2, 3,4, only, hence
Fy(z2) = P1(z) + +v/R(z) P2(z), where Py, P, are polynomials. By (60) and (66) we have
Fy(2) = Poy(2) +V/R(@) Q21—2(2), WwhereQz,_(z) := €~D9q,_1(¢). Letus normalize
the polynomialQ2,,_2(z) in such a way thaf,(z) has a pole ato1, whereoo1 is the point
infinity in the first sheet of the Riemann surface of the functior= /R(z) associated
with C \ I'z. Since the variation of the argument Bf(z) whenz goes aroun(ij in the

clockwise direction is equal teanj(."), Whereqj(.v) denotes the number of zerosf )
on E;, the total variation of the argument &f,(z) whenz goes around the boundary of
C\ I'g is equal to—4nv. Hence by the Argument principle2v = Z — P, whereZ, P
denotes the number of zeros and polegpfn C \ I'z, respectively. Taking into account
the choice of the branch af R we haveP = 2v, henceZ = 0.

Since by (60)

(P2y(2) + v R(2) 020-2(2)) (P2y(2) — VR(2) Q2v—2(2)) = M?A(2)z¥ ™, (67)

we get

Poy(zj)) = WRO2-2)(z)), j=1,...,m" (68)

and (b) is proved.

(b)<>(c). Follows by Lemma.

(d)=(c). The proof is analogous to the proof of Coroll&yOne applies Theore&with
w=1,p=0,W =1, and takes into account the uniqueness of the orthogonal polynomials
which have maximal orthogonality (dfL8]).

(c)=(d) PutP,,, Q2,2 asinthe proof of (a)=(b). Then we get from (67) and (68) the de-
sired result by applying Theoren. Formulas (63), (64) are also obtained
by Theoren?.

(b)=(a). The proof is analogous to the proof2®, Corollary 3.2(a)]. One needs to take
into account also the variation of the argument of the funcfipfrom the proof of (a)=(b)
which can be determined easily by (64)]
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Remark 5. For A = 1 special cases of Corolladycan be found irf9,24]; the connection
with orthogonal polynomials was discovered[R0] for any number of arcs even. For
E = [0, 2x] the problem was considered by Szg480]. Concerning algebraic analogues
see als¢14,15].

4. Behaviour of zeros

Let S1 and S, be neighbourhoods of the ar€%;, andI'g,, respectively. For technical
reasons it is more convenient to take them as images of the SFiaadSZD under the map
x = ¢(u), where

S’ ={—& <Reu <0,—K' <Imu < K'}
and

SZD ={-K <Reu < —-K+¢e K <Imu<K'}.
We need also the notations

Sliz {—e <Reu<0,—-K <Imu < K’}

and

S?:{—KSReu <—K+e¢—K <Imu <K'}

Theorem 6. Let £ be positive definite; >a + 2 + v. Then the number of zera$” and

k,(,z) of the polynomialP, in S1 and S, are given for sufficiently large n by the formulas
1 LA 186 w
1 , 1
k,i>=n—E(z,1+ﬁn(1_5<">))—]§_l oMt
and
@_1 o)
kn Zé(ln_"/n(l_é ) — w2),

wheref, = 1if b™ e Sli andp, = 0if b™ ¢ Sli; analogouslyy, = 1if b™ e S2i and
7, = 0if b™ ¢ S5 Let us point out thab™, 1, and 5™ are given uniquely by46) and
(47) (taking into account the convention from Coroll&)y

Proof. Firstof all let us note that because of the positive definiteness of the functicdhal
numberu from Lemmal is equal to 0. Furthermore, let us show that O, i.e., P,,(0) # O.
Indeed, assume that= 1 then it follows by (25) thaQ,,+2-2,(0) = 0. Dividing relation
(25) by Z one gets that the polynomi#,_1(z) := P,(z)/z is orthogonal with respect to
L for j € (0,n — 1] and thusdg(,, = O, which is by Theoren? equivalent tod"™ = 0.
But by Corollary3 8™ e {—1, 1} which is a contradiction.
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Thus formula (30) can be written as follows:

n+w—a 7y Jrtw—a=1 pr
P, (p(u)) = ce " u/K [H(u + C)] [H(M + C)} I

Hw -0 Hw -0 i1
H aimi [ g p o
% [M} H (u+b") . (69)
H(u—vj) H(u—b™)

Now we can determine easily all poles'8f, (¢ (u)), naturally they coincide with the poles
of 1+ ¥, (¢(u)), and are of the same order. In particular, by (69)%,, (¢ (1)) has Z + 2w
poles in the parallelogram of perio@s

First let us prove the statement for the case:

0™ =1 and W(E?)W(E?2) £ 0. (70)

We suppose that > 0 is sufficiently small and such that there aremts in Sli and in

S5’ and nob™’s ondsT or ds5.
We claim that
A: Apoint z, |z] < 1, is a zero ofP, if and only if it is a zero of .+ ¥,,(z).
Let us proof claim A. From (28) and (29) it follows that

2P, () (W(2) Py (2) + v/ R(2) Qni2-20(2))

1+ ¥.(z) = I A (D) g () (2)

Comparing it with definition (34) of?,,(z) it can also be written in the form
2Py (2)Yn(2)W(2)

1+ Y¥,.(2) = Vi .
Py(z) + W?) On+2-20(2)

(71)

Because of the positive definitenesgaind by Peherstorfer and Steinbaldd, Proposition
2.3]the polynomialsP, andQ,,+2—2, have no common zeros, hence by (71) all zeroB,of
will be zeros of 1+ ¥, (z). By the positive definiteness df P, (z) hasn zeros inz| < 1.
Hence sinceb(u) is evenP, (¢ (u)) hasn zeros in

Oy ={u:—K <Reu<0,0<Imu <K'} (72)

andn zeros in—[,.. Thus 1+ ¥,,(¢(«)) has 2: zeros at the zeros dt, (¢ (u)). Moreover
all zeros ofW (¢ (u)) will be zeros of 1 ¥, (¢p(u)) also. Altogether we found2+ 2w zeros
of 1+ ¥, (¢(u)). By the ellipticity of 1+ ¥, (¢(u)) the number of zeros and polesfnis
the same. Since we have shown at the beginning of the proofth#,1¢ (1)) has 2 + 2w
poles inP, the zeros o, (¢(u)) and of W (¢ (u)) are the only zeros of + ¥, (¢p(u)) in P.
Hence clainA is proved. In particular, the number of zeroghf ¢ (1)) and of H+ ¥, (P (u))
in SlD is equal. Furthermore, as it is easily seen from (69}, ¥, (¢ (1)) has one pole in

SP, if b isin ST (recall thay™ = 1), hence by the Argument principle

2nly — B,) = varargoso (1+ ¥ ($w)), (73)
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whereaSlD is passed around counterclockwise. Because of the ellipticity of the function
1+ ¥,(¢(u)) we have

vararg, oo A+ P,(pw))) =var arglesib(l + ¥, (pu)))
—var arg{esiz>(1+ Vau(p(u))) =: A1 — Az, (74)

whereS(l) {u : Reu = 0, —K'<Imu<K’}, Siz) ={u: Reu = —¢,—K'<Imu
<K'}

To computeA 1 we will describe the range of the functidy, (¢ («)) and compare it with
the range of the function % ¥, (¢(«)), whenu varies anngS(l).

For that reason let us write relation (69) in the form

v, (¢(u)) = fuhy, (), (75)
where
- \n—a-1
= [HutOHE D o m[Hw+vq)” (76)
! Hu—OH@u—0) o LH@ =)
and
(n)
hp(u) = gimm®u/K i+ OH (u+b™)
Hu-0OH (u - b(”))
X(_efiﬂu/K)Zjej).jmjefiﬂfzjej)ijEUj/K’ (77)
From Lemm@&A.1 it follows that
lful=1 forues®, andlf,)|>1 forues?. (78)
Furthermore, for € Sil) we have by straightforward calculations
| @)hy (—u)| = 1. (79)
Recall also (cf. (36)) that
Now it follows from (75) that
vararg, _qa ¥, (¢u)) = var arg,sw fu(@(u)) + var arg,sw hu ()
=:A11+ A12. (81)
To computeA; one has to observe firstly, that by Lemid. the function
Hu+{)
o(u, () :=argq———
(u, ) Hu—0)

is equal to the harmonic conjugate of the Green’s funcgion-, (¢(u), oo) =: g(u) hence
foru e [—iK’',iK']
0o Og

dy  ox
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(by the Cauchy—Riemann conditions, with= x + iy), and it is obvious thagf < 0 for
ue[—iK',iK'landforu e [-K —iK', —K +iK'Twe havegé > 0. Soo(u, {) is strictly
decreasing along € [—iK’,iK'] and along: € [-K + iK', —K —iK'], hence
Hu+0 _ (H(iK’ +0) H(-iK - C))
H(@u — () H(GK' —{0) H(—iK'+0
+2un = —2nRe{/K + 2un, (82)

where—p € N and the last equality follows by (23). But (82) holds for dng [J, hence
by continuity with respect td for Im { = 0 the relation

vararg,_ix.ix|

Hu+ ()

— ZEC/K + 2[17'5 =var argle[_iK,’iK/] m (83)

holds. In an analogous way
Hu+0)

vararg,ci_k4ik'.—K—ik'l 5 Hu—0 = 2nRe(/K + 2vm, (84)

with —v € Ng, and for Im{ =0
H(u+
2n{/K + 2vr = vararge_gyix’,—k—ik’ At o) (85)

PH@ -0
The variations of the argument of (83) and (85) were comput¢tiah but for the sake of
completeness let us give another proof. Adding (82) and (84) one gets

Hu+0)
vararg,cr_ g 4+ik’,— K —iK'U[—iK",iK'] Hu—0) =2(u+vm

and that the variation of the argument is equat-@r because of the Argument principle.
Henceu = —-1,v =0, and

H
vararg,c_ig x| HEM—Jrg —2nRe(/K — 2m, (86)
H(u+
vararg,e(_ g tik’.—K—ik’| HEM 2 =2nRe(/K. (87)

Letusobserve, (87) with the help[84, formula (4.3)pives us (101) immediately. Similarly
one computes

H(u+v;)

vararg,c_ix.ix| Ho o
J

= —2nRev;/K — 2m,

and

Hu+v)
vararge gk’ k- ,K]m_ZnRevj/K.
J
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Thus we get by (76), (77), (81), (86) and (87)
Al1=mn—a— 1+ w)(—2n(2Rel/K + 2))

m*

—21 ) " Jjmj(Rev;/K +1) (88)
j=1
and
A1 = —2n(Re! + Reb™) /K — 4n. (89)

Now we are ready to study the rang€$ of the function?,,(¢(«)) and to compare it with

the range(é) of the function 1+ ¥, (¢(«)) whenu varies alongs‘il).
It was mentioned before that the function

Hu+{)
o(u,() :=arg———
YHu -0
is strictly decreasing whemvaries alongsil). The function
. Hu+ )
Hu—10)
has an analogous property, hence by (75), (76) for sufficiently larthee argument of
¥, (¢(u)) is strictly monotonically decreasing whawaries alonggil). Now using relation
(80) it follows that the curvé& consists of two closed curves with end points 1 (recall the
suppositionw (€%1) W (€/%2) £ 0) such that the second one is the image of the first one
under reflection with respect to the unit circle and to the real axis. Sirs@es not run
through—1, we get
vararg _ca__ixr g Fn(¢@)
=2varargc_ig ix] (L + Yu(d))) = 2A1. (90)
Next let us show that fat > Ng

|V, (pw))| > 1 for ue S, (91)
Indeed, since by Lemma.1

>1 onue Siz)

Hu+OHu+0

‘H@—@Hw—b
it follows that there exists aiWp such that for any. € N, n > N,
Hu+OH@+D[ "

ues? | Hu—OH@w—0)
m* H — \qAjmj
>l sup [M} j / (@)1, (92)
ues? |j=1 H(u —vj)

with g, > 1, which proves in view of (75) and (76) the claim.
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Thus
A = var argtesiz) Y, (W) = 2np, + var argtesib Y, (o)) = 2rp, — 2xl,,

where the first equality follows by definition (74) of,&and (91), the second one uses the
ellipticity of ¥, (¢(u)) and the assumptiof”’ = 1, and the third equality follows by (81),
(88), (89) and (32). Hence

Ap = 2npf, — 2nl,. (93)

Finally we get with the help of (73), (74), (81)—(88), (90) that

1 1 & 1
kD = < ((n —a—1)Rel + > Z AjmjRev; + E(REC + REb(”)))
=1

1« L . )
+n—a+ > Z Ajm ;. which is the assertion under assumpt(@0).
j=1

If 6™ = —1 andW (€?1)W(€92) # 0 then in (73)g, should be omitted, and in (93) it
should appear with minus sign.

For the calculation ok,(,l) in the caseW (é1) £ 0, W (€¥2) = 0, one cannot repeat the
considerations from above without any modification since the c(@yeoes through the
point 0. Hence one needs to take the modified “interval= [-iK', —ig]U[ig, iK'JUC,,
whereCs is the circumference with center= 0 and radiug, andC;, C;r are its left- and
right-hand halves, respectively.

LetB, D, O denote the images of the pointss, i£, 0 under the functio®’,, (¢ (u)). Note
O is the point—1. Since the variation of the argument %%, (¢(x)) (for n large enough)
is strictly decreasing along-ié, i€], the curveBOD is such that; < argD < 7,7 <
argB < 3—2” Now the variation of the argument of the function+1¥, (¢ («)) along the
circumference’; is equal to Z (recall that?, (¢(0)) = —1 sinceW (¢(0)) # 0). Thus the
image ofC; under the functio®?,, (¢ (1)) is such that the point 1 lies inside of?,, (¢(C;))
and the curvel, (¢(u)) goes counterclockwise arouwhenu varies counterclockwise
aroundu = 0 alongC;. Hence the image of ;" will be such thatO is at the right-hand
side of ¥, (¢(C;)). Finally, we get that the variation of the argument#f(¢(u)) along
[0,iK']is equal to—(2k+ 1)7, k € Np, because o?,(¢(0)) = —1 and¥?,(¢(K')) = 1.
Thus the considerations give finally

vararg,c ;. (14 ¥u () = —2(k + L)m.

The variation of the argument of the functiortl¥, (¢ (u)) alongaszD is calculated in an
analogous way.

Concerningthe cases R&) = 0andReé"™ = —K . Letus considerthe case R& =0
for instance. Then one needs to take the modified “interval”

Je = [-IK', —i(Im{+ K"+ U [-i(m{+ K' = &).i(m{+ K — 8)]
U lim{+ K +8),iKTUCS U (-C;),
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whereC? is the circumference with center= i(Im { + K’) and radiug, andC; , C; are
its left- and right-hand halves, respectively. Then the variation of the argum&ht(gf(u))
alongJ; is computed in the same way as above, and

var arg, ;. A+ P, (pw))) = var arg,. j. Y, (pu)).

Other cases are considered in the same manmneér.

Theorem 7. Let the functionalC be positive definitdetz; ,, j = 1, ..., n, be the zeros

of P, and let Z be the set of all accumulation points(x)]tn)’}f‘f’n:l. Furthermore put

S=¢L), L={uel:Imu=Im{+K'}, E=(%: 1 =-1). (94)
Then the following statements hold:

(@ zZCclgUZEuUS, whereZNl'g=TI'randZNZ=2%.
(b) ZNS = SandthusZ = I'g U Z U S if the harmonic measure,(oco) of ', is an
irrational number.

(c) If wz(oc0) is rational,thenN := Z N S is a finite set andV = {|z| < 1}N

1 m*

¢ < |Ret@r+2w—2a—1)+ > ijm;Rev;
j=1
+i(m{+K'):ne N}

Proof. First let us recall (see claim A in the proof of Theoréjthat P, (¢ (1)) has a zero
atu e int0Jif and only if ¥, (¢(u)) = —1. With the help of relation (91) and by the
continuity of ¥,,(¢(u)) it follows by representation (69) that each mass-pgiait;) of £

is an accumulation point of zeros (3P,,(q5(u))) since/Z; = —1 and thusy; is a zero of
¥,(¢(w)). Furthermore, it follows by the same reasons with the help of (46) that other
accumulation points of zeros ¢P,) in C\ E, more precisely if|z] <1} \ E, sinceP,(z)
has all zeros iff|z| < 1}, may appear at accumulation points(gf(b)), b™ ¢ int [,
only, where an accumulation poibt € [ of (b™), i.e.,b* = limy_.o b"%, is a limit
point of zeros of P,,, (¢ («))) if and only if %) = —1 for k > ko. Recall(l, is defined in
(72). Next let us show thdt* e L. Indeed, putting = m™ + Z'}il Zimjlmu;/K’, it
foII0\2v§ from (46) that there are two possibilities foreither: = 1 or: = 0. Furthermore,
for 6" = -1

Imp™ =Im{+K' fori=1, andImp®™ =Im{ fori=0 (95)
and for6™ = 1
Imp™ =—Im{—K' fori=1, andImp®™ =—Im{ fori=0. (96)

Now from limg_, o ™) = b* € O, andd™ = —1 for k >k we obtain that the first
relation in (95), i.e.; = 1 holds. Thus the first part of part (a) is proved.

The statement N 'y = I'g follows by (3). It is also known, see e.[25,8, Theorem
9.2] that each isolated mass point attracts exactly one zeRy.ofhis can be proved also
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in the following way: taking into consideration the facts thgt = 1, sinceL is positive
definite, and that there are n8”’s in the neighbourhood of mass pointsfor sufficiently
largen, we have

vararg,.z ¥n(¢u)) = vararg,.z(1+ ¥, (p(u))), (97)

whereB3 is a small circumference with center= v;. But the left hand side expression in
(97) is equal to i because of (30), hence the number of zeroB,ah the neighbourhood
is equal to 1 proving the assertion.

Concerning part (b), let us recall Chebyshev’s theorem; 0f < o < 1, is an irrational
number, then for any € R and for anys > 0 it is possible to findt € N andm € Z such
that

Inoe —m — x| < &. (98)
Putox = — R and

Ref I Rev, ob

whered € {—1,1} andb, —K < b < 0, are arbitrary. Then for any > 0 it is possible to
findn € N andm € Z such that (98) holds. By (47)

Rev; 5" Reb™
2K 2K

Ret ™
noe=(w-—a-— 1/2)7 +Z; Ajm;j
]:
+w2/2 — (I, —w2)/2.

Inserting this in (98) gives

ob  3"Reb™

2k T ok = (Up —w2)/2—m)

< é&.

Since e (~1/2,1/2) and " Re.™ ¢ [—1/2 1/2], we have (f — w2)/2 = m, and

sb 3" Reb™

2k~ 2k | =%

Hence for any € (—K, 0) andd = —1 there is a subsequengs,) of the natural numbers
such thab ") satisfying (47) and (46) with”"*) = —1 (recall (95) and the fact that= 1)
tends tob +i(Im{ + K’). Hence (b) is proved.

Part (c) is proved in the same manner by taking into account that there exists only a
finite number of possible solutions of (47) for alke N and that only fos™ = —1 these
solutions will attract zeros af,. [

Remark 8. Part (c) can be proved (with description of the A&tn other terms) by com-
bination of[21, Theorem 3.3][20, Remark 3.1, Theorem 4.2hd the corrected version of
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[22, Theorem 4.2], i.e., in (ii) and (iii) of Theorem 4.2 ghi= 1 and in (iv) addr°(0) = 1,
(compare als¢l1]).

Remark 9. Letus note that TomchyB2] on p. 2 before Theorem 2 claims that the function

at the right-hand side in (49), denoted by him pf¢z, «/R(z)), has all zeros inz| < 1.

We would like to mention that the claim is not correct. Indeed let us assume that the claim
is correct. Then the functiof2, («) from (49) and (44) (see the introduction ¢fat the

end of Sectior?) has all zeros in the upper half of, i.e. in0; = (—K,0) x (0,iK’)

or in —,. Moreover by (44)-8"p™ e £, for n>a + 1 + v. But let us show that

this is impossible, because there always exist a subsequencsuch thatt" = 1 and

b e [—K, 0] x [—iK’, 0] if the functional is positive definite. Indeed, by (48) we can
choose a sequencegy) such that for ang € N 6% = 1. Now it follows from (35) and

from [19, Theorems 2.1, 2.2hat

2
PHD) (Fo +53) 4@V Q)

U4 = , 99
1a(2) Frratlmwee (z) (99)
where
F@) =£<X+Z;A,w,z>
X —2Z

is the Caratheodory function associated with the functighahd,,(z) (do not mix with
Q, from Corollary3) are the polynomials of second kind. SifEe ,(¢ (1)) = ¥, (¢(—u))
the functions¥'y ,, (¢ (1)) have a zero at = b by (30). Butg(,,)(¢(u)) also has a zero
atu = b hence by (99)

Q, (¢(M))
F u)) + kT
(¢( 2 Pnk (d)(u))
has a zero at = b"*). Now by[7, Theorems 12.1, 12.2he functionF (z) + 2@ has no

Py (2)
zeros inside the unit circle, henpg(b™))| > 1, andb™) e [—K, 0] x [—iK’, O].

Appendix A.

Lemma A.1. (a) The Green’s function g df\I"; with respect to the pointy € C\I'g, is
given in terms of Jacobian elliptic functions by the relation

H@u+79)
= =log| ———= 1
8¢\r, (@ co) = log Hu—y| (100)
wherez = ¢(u), ¢ is given by(22)andcg = ¢(y). In particular, oo = ¢ ().
(b) The harmonic measure &7, atz = oo is given by
Rel
0)2(00) = —7 (101)

Note thatw1(co) + w2(0c0) = 1.
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(c) The capacity of ¢ is as follows

Hil
r = cap(y) = ‘% . (102)

Proof. (a) The functiong(z, co) defined by (100) is harmonic db\(I's U {co}) since itis

a single-valued real part of the multi-valued analytic function

Hu+7y)

lo ,
YHw

which follows by the facts that

Hu+2iK'+%) H@u+9) _ g2inRey/K
Hu+2iK —y) Hu—y)

and that

Hu+2K+79) Hwu+y
Hwu+2K—v) Hu-—y

Furthermore, for £ { (i.e.cq # c0)

Hu+79) H@u+7%)

—— 1 +loglu —y| =log| ——= - (u — 103

‘H(u_y) glu -yl =log H =) (u—=7) (103)
is a bounded function in a neighbourhoodyphenceg(z, co) = —log|z — co| + O (1),

asz — cp. Analogouslyg(z, o0) = log|z| + O(1), asz — oo. Moreover, for Re:r =
0, —-K'<Imu<K’,

(104)

‘H(u+)7) 2 Hu+7% H(@+y) 1
Hw—y)|  Hu—y H@—7%

and analogously (104) holds for Re= — K, — K’ <Imu < K’. Hence (100) is the Green’s
function.
(c) From the definition of capacity it follows that

t=¢€", yp=lim g(z,00) —log|z|. (105)
7—>00

Since by (22) and the Representation theorem for elliptic functions

lpu)| =

Hwu—0OHwu+0)
Hwu—OH@u+ 0

relations (100) and (105) give the desired result.
(b) is given in Theorend. [

For another representation of the Green’s function22k
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