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Abstract

In this paper we study polynomials(Pn) which are hermitian orthogonal on two arcs of the unit
circle with respect to weight functions which have square root singularities at the end points of the
arcs, an arbitrary nonvanishing trigonometric polynomialA in the denominator and possible point
measures at the zeros ofA. First we give an explicit representation of the orthogonal polynomialsPn
in terms of elliptic functions.With the help of this representation for sufficiently largen the number of
zeros ofPn which are in an�-neighbourhood of each of the arcs are determined. Finally, it is shown
that the accumulation points of the zeros of(Pn)which are not attracted to the support lie on a Jordan
arc running within the unit disk from one of the arcs to the other one. The accumulation points lie
dense on the Jordan arc if the harmonic measures of the arcs are irrational. If the harmonic measures
are rational then there is only a finite set of accumulation points on the Jordan arc.
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1. Introduction

Let d��1 < �2 < �3 < �4 < d + 2� and put

E = [�1,�2] ∪ [�3,�4] = E1 ∪ E2

and let

{z = ei� : � ∈ E} = �E = �E1 ∪ �E2.

Forn ∈ N0 = {0, 1,2, . . .} let

�n/2 =



[n/2]∑
k=0

ak cos

(
n− 2k

2
�
)
+ bk sin

(
n− 2k

2
�
)
: ak, bk ∈ R




denote the space of real trigonometric polynomials of (integer or half-integer) degree no
more thann/2. We sayD ∈ �n/2 is of exact degree�D = n/2, if |a0| + |b0| 
= 0. By
R ∈ �2 we denote the trigonometric polynomial which vanishes at the endpoints of the
two arcs, i.e.,

R(�) =
4∏
k=1

sin
� − �k

2
(1)

and let

R(�) = V(�)W(�) (2)

be an arbitrary splitting ofR with V,W ∈ �2 .
Loosely speaking we study polynomials which are orthogonal on the two arcs�E of the

unit circle with respect to a distribution of the form√|W(�)|/A(�)√|V(�)| d� + possible point measures at the zeros ofA(�),
whereA(�) is a real trigonometric polynomial which has no zeros inE and satisfies some
othermild conditions, see (4) below, also concerning the precise form of the pointmeasures.
(In fact even more general distributions including sign changing ones are considered).
First we give an explicit representation of the orthogonal polynomials in terms of elliptic

functions and show how this representation can be used also to obtain trigonometric polyno-
mials minimal on two intervals with respect to a weight function of the type 1/

√|A|. Then
we emphasize on the zeros of the orthogonal polynomials. Let us recall that it is known by
Fejer’s Theorem on zeros of minimal polynomials[4] that all zeros ofPn lie in the convex
hull of �E (in fact, strictly inside, by Saff[26]) and that they are attracted to the support up
to a finite number (Widom’s theorem[33]). Furthermore, it is known (see e.g.[26, Theorem
5.2],[27]) that the zero distribution of(Pn) convergesweakly to the equilibrium distribution
of �E, i.e.

1

n

n∑
j=1

�zj,n →
n→∞ ��E , (3)
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where�zj,n denotes, as usual, the Dirac-delta measure at the pointzj,n and��E the equilib-
rium measure of�E.

Naturally we would like to know the precise number of the zeros ofPn attracted to
each of the two arcs and what about the zeros which are not attracted to the support.
Concerning the first question we present a formula for the precise number of zeros which
are in anε-neighbourhood of each of the arcs for sufficiently largen. Then the behaviour
of the accumulation points of the zeros of(Pn) not attracted to the support is investigated.
It is shown that they lie on an open analytic arc with endpoints which are inner points
of �Ej , respectively, and can be given explicitly, see (94) below. Furthermore, the set of
accumulation points is denseon this curve if the harmonicmeasures of the arcs are irrational.
If the harmonic measures are rational then the set of accumulation points of zeros on the
analytic arc is finite. The last case is known already[21, Theorem 3.3]when one takes
into consideration the known fact that the reflection coefficients are pseudoperiodic if and
only if the harmonic measures are rational (see[22] and concerning pseudoperiodicity[11,
Theorem 1(a)]).

Let us note that the behaviour of zeros of polynomials orthogonal on the whole unit circle
is very different from that one in the two arcs case. Indeed, it is well known in the case of the
whole unit circumference zeros need not be attracted to the support as the simple example
Pn(z) = zn shows. Let us mention also that in the case of one arc, under the assumption
that the weight function is sufficiently nice, the reflection coefficients converge and thus
there is always at most one point (which can be deduced from[21]) to which zeros may be
attracted if they are not attracted to the support.
Using the fact thatweight functionsof the form

√|W|/f√|V|onEandzerootherwisecan
be approximatedwell by weights

√|W|/An√|V| treated in this paper it can be shown using
Tomcuk’s asymptotic approach[32] (compare also[34]) that the polynomials orthogonal
with respect to the above weights are asymptotically equal and that the behaviour of the
zeros is the same also, that is, is such as described in this paper. This will be demonstrated
in a forthcoming paper[13]. At this point let us mention that asymptotic representations
of polynomials orthogonal on two arcs of the unit circle can be obtained also from the
very general and nice results of Widom[34]. To extract the behaviour of the zeros of the
orthogonal polynomials his results seem to be not explicit enough (compare[2] with this
respect also).
Let usmention that by Stahl andTotik[27, Theorem2.1.3]there existsmeasures such that

the set of accumulation points of the zeros of(Pn) is dense in the convex hull. For measures
whose support is the unit-circumference which have the property that the accumulation
points of the zeros are dense in|z| < 1, so-called Turanmeasures, see the recent discussions
in [8,25]. The results of this paper should be compared with the results on the zeros of
polynomials orthogonal on two intervals[−1, a] ∪ [b, 1], −1 < a < b < 1, where a
similar behaviour of the zeros has been observed by the second author[16] concerning the
number of zeros in the intervals[−1, a], [b, 1] and the denseness of zeros in the gap[a, b].
In the meantime these results have been extended to several intervals[17], see also[28, p.
92] for denseness results under certain assumptions.
There is also a vast literature dedicated to similar questions about zeros of nonhermitian

orthogonal polynomials or more generally of denominators of Padé-approximants. With
this respect we refer to the survey[28] and the recent papers[3,10].
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2. Notations—Examples

Henceforth letA(�) ∈ � = ∪∞
l=0 �l be an arbitrary real trigonometric polynomial

which has no zeros inE, i.e.,

A(�) 
= 0 for � ∈ E (4)

and thusA can be represented in the form

A(�) = cA
m∗∏
j=1

(
sin

� − �j
2

)mj
, (5)

wherem∗,mj ∈ N and where the�j ’s are distinct, lie inC \E and for�j /∈ R there exists

a�k = �j with mk = mj .
As announced in this paper we study polynomialsPn orthogonal with respect to the

functionalL(·;A,W, 	), i.e.

L(z−kPn) = 0 for k = 0, . . . , n− 1, (6)

where the functional is given as follows:

L(h;A,W, 	) := 1

2�

∫
E

h(ei�)f (�;A,W) d
 + G(h;A,W, 	), (7)

with

f (�,A,W) =
{ W(�)

A(�)r(�) , � ∈ E,
0, � /∈ E (8)

and

G(h;A,W, 	) = 1

2

m∗∑
j=1

(1− 	j )
mj−1∑
�=0

�j,�(−1)��(�)zj

(
h(z)

z

)
, (9)

where

1

r(�)
:= (−1)j√|R(�)| , j = 1,2; (10)

the�j,�’s are certain complexnumbers (for their exact description see (14) below)depending

onA,W andR, zj := ei�j ∈ C \ �E, �
�
zj
(g) := (−1)�g(�)(zj )/�! and

	 = (	1, . . . , 	m∗), with 	j ∈ {−1,1} and such that	j1 = 	j2
for �j1 = �̄j2. (11)

The functionalL(·;A,W, 	) was introduced in[19] for an arbitrary number of arcs even.
Naturally the functional need not be positive definite. As usual we call a functionalL
positive-definite, if det(cj−k)nj,k=0 > 0 for all n ∈ N0, where the momentscj are given

by cj = L(z−j ), j ∈ Z. Note thatL is positive definite iff has no sign change onE
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andmj = 1 for all j ∈ {1, . . . , m∗} for which 	j = −1. For �W = �V − 2, 	 ≡ 1
andL positive definite we obtain weights studied by Tomchuk[32]. For other studies of
polynomials orthogonal with respect toL, see also[6,23]. If L is not positive definite we
may have higher orthogonality ofPn, indeed we may have

L(z−kPn) = 0, for k = 0, . . . , n+ � − 1, � ∈ N.

As we shall see (Corollary4 to Theorem2 below, compare also[12, Theorem 1]) this case
of maximal orthogonality is of interest in describing rational trigonometric functions which
deviate least from zero on the two intervalsE1 ∪ E2.

Let us give two examples, the first one related to the positive definite case and the second
one related to higher orthogonality.

Example 1. Suppose thatA has only real zeros and exactly one simple zero in each interval
(�2j ,�2j+1), j = 1,2;�5 := �1 + 2�, i.e.

A(�) = sin

(
� − �1

2

)
sin

(
� − �2

2

)
,

where�j ∈ (�2j ,�2j+1). Then for the weightf (�;A, 1) the orthogonality condition (6)
takes the form, by inserting the explicit expressions for�j,0 given in (14),

∫
E

e−ik�Pn(ei�)

|A(�)|√|R(�)| d� +
2∑
j=1

(1− 	j )
2

√
R(ei�j )e−i(k+1)�j Pn(ei�j )

i
(

d
dzA

)
(ei�j )

= 0 (12)

for k = 0, . . . , n−1,whereR(ei�) := e2i�R(�)andA(ei�) := ei�A(�). Recall that	1, 	2
can be chosen arbitrary from{−1,1}. Relation (12) represents an orthogonality relation for
Pn with respect to a positivemeasure d�which hasmass points at those ei�j where	j = −1.

Example 2. If there exists aT-polynomialTN onE (see[20]), then it is orthogonal with
respect to the sign-changing weightf (�; 1,1), namely,

L(z−kTN ; 1,1,1)= 0 for k = 0, . . . , N

and denoting by
, |
| = 1, the leading coefficient ofTN, the trigonometric polynomial
�N(�) = e−i(N/2)�TN(ei�) deviates least from zero onE with respect to the sup-norm
among all trigonometric polynomials of degreeN/2 with leading coefficients 2 cos� and
2 sin�, where
 = e−i�.
In the following we need the additional notations: letPn denote the set of algebraic

polynomials of degreen, let A(z) be the algebraic polynomial which is connected with
A(�) by the relation

A(ei�) = eia�A(�), (13)
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where 2a = 2�A =∑m∗
j=1 mj , i.e.

A(z) = cA
m∗∏
j=1

(z− zj )mj ,

with cA ∈ C, zj = ei�j , j = 1, . . . , m∗, and allzj are distinct, and for|zj | 
= 1 there
existsk such thatzk = 1/zj ,mk = mj . The polynomialA coincides with its reciprocal
polynomial

A∗(z) = z2aA(1/z̄),
i.e. it is selfreciprocal. Furthermore,R,V,W arealgebraic polynomials of degrees4, 2v, 2w
correspondingly, which can be obtained fromR,V,W in an analogous way to (13),wj
denotes the number of zeros ofW on [�2j−1,�2j ], j = 1,2,

Aj (z) = A(z)

(z− zj )mj
and we make the additional suppositiona − w + 1 ∈ N0.
Now we can describe more precisely the functionalG(h;A,W, 	) from (9). Namely,

G(h;A,W, 	) = 1

2

m∗∑
j=1

1− 	j
(mj − 1)!

(
za−wWh
iAj

√
R

)(mj−1)

(zj ), (14)

i.e.

�j,� =
1

(mj − 1− �)!

(
za−wWh
iAj

√
R

)(mj−1)

(zj ),

where here and everywhere later by
√
R the branch onC \ �E is denoted which satisfies

arg
√
R(ei�) = arg(−ei�), � ∈ (�2,�3). (15)

In the case whenmj = 1, j = 1, . . . , m∗, the functionalL is nothing else as the Stieltjes
integral with respect to the measure with absolute continuous partf (�,A,W)d� and with
possible addition of masses at the pointszj .
So the main objects of investigation are the polynomialsPn, which are orthogonal with

respect to the functionalL in the sense of (6). We shall use the notation

L(z−kPn) = 0, k ∈ (0, n− 1)

for (6). But if it is known thatL(z−nPn) 
= 0, then we shall writeL(z−kPn) = 0, k ∈
(0, n− 1].
The following conformal mapping of a certain rectangle in the complex plane to the

exterior of�E will play a crucial role in the statement of our results. Let

k2 = (ei�1, ei�2, ei�3, ei�4) (16)
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be the modulus of the exterior of�E , where

(z1, z2, z3, z4) := z4 − z1
z4 − z2 : z3 − z1

z3 − z2 (17)

denotes the double relation between pointsz1, z2, z3, z4. The moduluskwill be simultane-
ously the modulus of the Jacobian elliptic functions

snz = sn(z; k), cn z = cn(z; k) =
√
1− sn2z

and

dn z = dn(z; k) =
√
1− k2sn2z

and letK = K(k) be the complete elliptic integral of the first kind of moduluskdefined by

K = K(k) =
∫ 1

0

dx√
(1− x2)(1− k2x2) . (18)

As usual let

k′ =
√
1− k2 and K ′ = K ′(k′)

denote the complementary modulus and the complete elliptic integral of the first kind
with respect tok′, respectively. Furthermore, in the following we assume without loss of
generality that

�1 = 2� − �4,

since it can be satisfied after a suitable turn of the unit circle, and such a turn corresponds
to a substitution of the kindz→ ei�z.

Next let us construct the conformal mapping from the (partly open) rectangle

� = {u ∈ C : −K < Reu < 0, −K ′ < Im u�K ′}
to the exterior of�E . In the following we shall use also the notation

� = {u ∈ C : −K�Re�0, −K ′ < Im u�K ′}.
Since the conformal mappingw(u) from � to the exterior of two disjoint intervals say
[−1,
] ∪ [�, 1],−1< 
 < � < 1 is known to be (see[1, p. 139],[5])

w(u) = sn2 u cn2a + cn2 u sn2a

sn2 u− sn2 a
= 
 + 1− 
2

2(sn2 u− sn2 a)
, (19)

where


 = 1− 2 sn2 a (20)

and

� = 2 sn2(K + a)− 1,
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we obtain the desired mappingz = 
(u) easily by composition ofwwith the Möbius map

z = w − i tan �1
2

w + i tan �1
2

, (21)

which maps the upper half plane to the interior of the unit disk and the intervals[−1,
] ∪
[�, 1] to the arcs�E1 and�E2. Thus the function

z = 
(u) = 2 sn2 u sin �1
2 ei�2/2 + (
 − 1)ei�1/2

2sn2 u sin �1
2 e−i�2/2 + (
 − 1)e−i�1/2

, (22)

where


 = − tan
�1

2
cot

�2

2
= 1− 2 sn2 a,

� = − tan
�1

2
cot

�3

2
= 2

cn2 a

dn2 a
− 1

realizes that map. It is an even elliptic function of order 2 with primitive periods 2K and
2iK ′ and simple poles at±� in the period parallelogram

P = P(k) = {u ∈ C : −K�Reu < K, −K ′ < Im u�K ′},
where� ∈ � is defined by the relation

sn2 � = sin �1+�2
2 ei

�2−�1
2

sin�1 sin
�2
2

.

The points

z : ei�1 → ei�2 → ei�3 → e−i�1 → ei�1

correspond under the map
(u) to the points

u : 0→ iK ′ → −K + iK ′ → −K → 0

and the upper and lower halves of the open rectangle, that is,(−K, 0) × (0, iK ′) and
(−K, 0)× (0,−iK ′), are mapped onto the interior and exterior of the unit circumference,
respectively. Furthermore, we need the theta functionsH and� defined by (see, for example,
[31])

H(z) = �1
( z
2K

)
= 2

∞∑
j=0

(−1)j q(j+
1
2 )

2
sin
(2j + 1)�

2K
z

and

�(z) = �4
( z
2K

)
= 1+ 2

∞∑
j=1

(−1)j qj
2
cos

j�
K
z
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and related to each other by

H(z+ iK ′) = ie−i�z/2Kq−1/4�(z),

whereq = e−�K ′/K . Note thatH and� is an odd and an even function, respectively. Both
are analytic at every point of the complex plane and are quasi doubly periodic functions,
that is, they satisfy the relations

H(z+ 2K) = −H(z), H(z+ 2iK ′) = −e−i�z/Kq−1H(z), (23)

�(z+ 2K) = �(z), �(z+ 2iK ′) = −e−i�z/Kq−1�(z). (24)

3. The basic results

Thestarting point of our investigations is the following characterization (due to the second
author and Steinbauer[19]) of the polynomials orthogonal with respect toL(·;A,W, 	)
by a quadratic equation.

Lemma 1. LetL(·;A,W, 	) be given as above,let a − w + 1 ∈ N0, and let� ∈ {0, 1}.
Then forn�a + 1+ v the following assertions are equivalent:

(1) L(z−jPn;A,W, 	) = 0 for j ∈ (0, n+ � − 1]
(2) there exists a polynomialQn+2−2v ∈ Pn+2−2v and there exists a polynomialg(n) ∈

P1−� with g(n)(0) 
= 0 such that

W(z)P 2
n (z)− V (z)Q2

n+2−2v(z) = zn+p−(a+1−w)+�A(z)g(n)(z), (25)

wherep, 0�p�1, is the multiplicity of the zero ofPn at z = 0 and that

(VQn+2−2v)
(k)(zj ) = 	j

(√
RPn

)(k)
(zj ),

f or k = 0, . . . , mj − 1; j = 1, . . . ,2m∗, (26)
VQn+2−2v√

RPn

∣∣∣∣
z=0

= 1, V (0)Q∗
n+2−2v(0) =

√
R(0)P ∗

n (0). (27)

The basic theorem for what follows is the next one.

Theorem 2. Letn�a + 1+ v and� ∈ {0, 1}. If L(z−jPn;A,W, 	) = 0 for j ∈ (0, n+
�−1] then the polynomialsPn andQn+2−2v from Lemma1 satisfy the following relations:

2W(z)P 2
n (z)

zn+p−(a+1−w)A(z)g(n)(z)
− 1= 1

2
(�n(
(u))+ �n(−
(u))) (28)

and

2Pn(z)
√
R(z)Qn+2−2v(z)

zn+p−(a+1−w)A(z)g(n)(z)
= 1

2
(�n(
(u))− �n(−
(u))), (29)
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where

�n(
(u))= ce−i�m(n)u/K
[
H(u+ �)
H(u− �)

]n+w−p−a+1−�−�g(n)

×
[
H(u+ �̄)

H(u− �̄)

]n+w−p−a−1+� m∗∏
j=1

[
H(u+ vj )
H(u− vj )

]	jmj

×
[
H
(
u+ b(n))

H(u− b(n))

]�(n)

, (30)

b(n) ∈ �, m(n) ∈ Z, and�(n) ∈ {−1,0, 1} (�(n) = 0⇐⇒ �g(n) = 0) satisfy the system of
equations



m(n)K ′ + (2− 2� − �g(n))Im � +

m∗∑
j=1

	jmj Im vj + �(n)Im b(n) = 0, (31)

(2n+ 2w − 2a − �g(n) − 2p)Re� +
m∗∑
j=1

	jmjRevj + �(n)Reb(n) = −lnK, (32)

whereln ∈ N, and

c = (−1)2aFw(e
i�1). (33)

Here

Fw(z) = W2(z)− V 2(z)

W2(z)+ V 2(z)
.

Proof. Let us consider the function

�n(z) =
W(z)

(
Pn(z)+

√
V (z)
W(z)

Qn+2−2v(z)
)2

zn+p−(a+1−w)+�A(z)g(n)(z)
, (34)

whereQn+2−2v(z) andg(n)(z) are the polynomials from Lemma1. The function�n is
meromorphic on the Riemann surfaceS of the function� = √

R(z) (since it is a rational
function of the variables�, z). The Riemann surfaceS is a compact Riemann surface of
genus 1, and the mappingI (z,�) −→ (z,−�) changes sheets ofS.
The function

�1,n(z) =
W(z)

(
Pn(z)−

√
V (z)
W(z)

Qn+2−2v(z)
)2

zn+p−(a+1−w)+�A(z)g(n)(z)
(35)

corresponds to the function�n under the mapI.
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Applying themapz = 
(u), one obtains two functions�n(
(u)) and�1,n(
(u))which
are well-defined on the rectangle�. One can extend them onto the period parallelogram

P = P(k) = {u ∈ C : −K�Reu < K,−K ′ < Im u�K ′}

by

�n(
(−u)) def= �1,n(
(u)) and �1,n(
(−u)) def= �n(
(u)).

Then it is possible to extend them onto the whole planeC by the double periodicity with
respect to 2K and 2K ′. Since both functions�n and�1,n are rational functions of the
variables�, z, they are meromorphic on the surfaceS. It is well known that the Jacobian
elliptic functions uniformize the surfaceS, hence the functions�n(
(u)) and�1,n(
(u))
are elliptic.
Let us determine all zeros and poles of�n(
(u)). First, we conclude from (34), (35) and

(25) that

�n(
(u))�1,n(
(u)) ≡ 1, (36)

hence ifu is a zero of�n(
(u)) then−u is a pole of�1,n(
(u)), and vice versa. Now
from (34) and (27)

(i) u = � (which corresponds tox = ∞) is apoleofmultiplicityn+w−p−a+1−�−�g(n)
of �n(
(u))

and by (36)
(ii) u = −� is a zero of multiplicityn+ w − p − a + 1− � − �g(n) of �n(
(u)).
Moreover, by (34) and (27)
(iii) u = �̄ is a pole of�n(
(u)) of multiplicity n− p − (a + 1− w)+ �,
and by (36)
(iv) u = −�̄ is a zero of�n(
(u)) of multiplicity n− p − (a + 1− w)+ �.
From (34), (36) and (26) it follows that
(v) u = vj is a zero (pole) of multiplicitymj of �n(
(u)), if 	j = −1(+1), j =

1, . . . , m∗;
(vi) u = −vj is a zero (pole) of multiplicitymj of �n(
(u)), if 	j = +1(−1), j =

1, . . . , m∗.
Finally, for �g(n) = 1,
(vii) u = b(n) is a zero (pole) of�n(
(u)) if �(n) = −1(+1),
(viii) u = −b(n) is a pole (zero) of�n(
(u)) if �(n) = −1(+1).

Hereb(n) ∈ � and�(n) ∈ {−1,1} are defined by

V (
(b(n)))Qn+2−2v(
(b(n))) = �(n)
√
R(
(b(n)))Pn(
(b(n))). (37)

Summing up (i)–(viii) we get by the Representation theorem for elliptic functions in terms
of theta functions (see, for example,[1, p. 54]) that�n(
(u)) has a representation of the
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form

�n(
(u))= c(n)
[
H(u+ �)
H(u− �)

]n+w−p−a−�−�g(n)
[
H(u+ �̄)

H(u− �̄)

]n+w−p−a−1+�

× H(u+ �)

H(u− �̃
(n)
)

m∗∏
j=1

[
H(u+ vj )
H(u− vj )

]	jmj
[
H
(
u+ b(n))

H(u− b(n))

]�(n)

, (38)

where�̃
(n) = � − 2l(n)K − 2m(n)iK ′; l(n), m(n) ∈ Z.

With the help of (23) one obtains from (38) the required representation (30) up to the
multiplicative constantc.
Formulas (28), (29) together with

1+ 2V (z)Q2
n+2−2v(z)

zn+p−(a+1−w)A(z)g(n)(z)
= 1

2

(
�n(
(u))− �n(−
(u))

)
, (39)

needed in the following and which is just a rewriting of (29) follow from (34), (35) and
(25).
Writing down the condition of ellipticity�n(
(u + 2iK ′)) = �n(
(u)) for �n from

(38) gives (31) and (32).
To compute the constantc, putu = 0 in (38). Then

�n(
(0)) = c(n)(−1)l
(n)+m(n)q(m(n))2e�im(n)�/K(−1)2a. (40)

On the other hand, by (28)

�n(
(0)) = �n(e
i�1) = Fw(ei�1), (41)

hence by (40) and (41) equality (33) follows with

c = c(n)(−1)l
(n)+m(n)q(m(n))2e�im(n)�/K.

The case�g(n) = 0 is considered in an analogous way.
Let us give another representation form(n). For that reason let us putu = −K in (30)

and (28). Then

�n(
(−K)) = c(−1)m
(n)

and

�n(
(−K)) = Fw(ei�4).

So,

(−1)m
(n) = (−1)2aFw(e

i�1)Fw(e
i�4) (42)

and thereforem(n) is even (odd) for alln�a + 1+ v simultaneously. �
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Corollary 3. Let n�a + 1 + v. If the functionalL is positive definite then the monic
polynomialsPn orthogonal with respect toL have a representation of the form:

Pn(
(u)) = 1

2
(�n(u)+ �n(−u)), (43)

where

�n(u)=C�,n

(
H(u+ �̄)
H(u− �)

)n
H(u+ �(n)b(n))

H(u+ �̄)

×
(
H(u+ �̄)H(u+ �)

)w−a
ei�k(n)u/K

×
∏m∗
j=1H

mj

(
1+	j
2

)
(u+ vj )H

mj

(
1−	j
2

)
(u− vj )∏2w

j=1H(u− uj )
, (44)

k(n) = (m(n) − #{uj : Im uj = K ′})/2 and

C�,n = 2ei(�1+4
)n H
n(2i Im �)
Hn(2�)

H(2Re�)

H(� + �(n)b(n))

ei�k
(n)�/K(

H(2Re�)H(2�)
)w−a

×
∏2w
j=1H(� − uj )

∏m∗
j=1H

mj

(
1+	j
2

)
(� + vj )H

mj

(
1−	j
2

)
(� − vj )

, (45)


 = argH(�).
Furthermoreb(n) ∈ �, m(n) ∈ Z, and�(n) ∈ {−1,1} are given uniquely by the system

of equations



m(n)K ′ + Im � + ∑

j∈J
K ′	jmj + �(n)Im b(n) = 0, (46)

(2n+ 2w − 2a − 1)Re� +
m∗∑
j=1

	jmj Revj + �(n)Reb(n) = −lnK, (47)

if b(n) ∈ �, whereJ = {j : Im vj = K ′}. If Reb(n) = 0 or Reb(n) = −K we may put
�(n) = −1,which is done in the rest of the paper, and thenb(n) with−K ′ < Im b(n)�K ′,
m(n) ∈ Z, ln ∈ N with ln − w2 even, are given uniquely again by(46) and (47). Finally
the polynomialsQn+2−2v can be represented as

Qn+2−2v(
(u)) = 1

2
(�n(u)− �n(−u))

√
W(
(u))
V (
(u))

. (48)
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Proof. Let us define the function�n(u), u ∈ �, as

�n(u) = Pn(
(u))+
√
V (
(u))
W(
(u))

Qn+2−2v(
(u)), (49)

where thepolynomialQn+2−2v is givenby (25). Since the substitutionu→ −u corresponds
to the change of the branch of

√
V (
(u))
W(
(u)) , we have

�n(−u) = Pn(
(u))−
√
V (
(u))
W(
(u))

Qn+2−2v(
(u)). (50)

Now formulas (43), (48) follow immediately from (49), (50).
Let us prove representation (44). From (34) and (49) it follows

�n(
(u)) = W(
(u))�2
n(u)

(
(u))n−a−1+wA(
(u))g(n)(
(u))
. (51)

Further, applying the Representation theorem for elliptic functions one gets

A(
(u)) = const
m∗∏
j=1

(
H(u− vj )H(u+ vj )
H(u− �)H(u+ �)

)mj
, (52)

g(n)(
(u)) = const
H(u− b(n))H(u+ b(n))
H(u− �)H(u+ �)

, (53)

W(
(u)) = const
2w∏
j=1

H(u− uj )H(u+ uj )
H(u− �)H(u+ �)

, (54)


(u) = const
H(u− �̄)H(u+ �̄)
H(u− �)H(u+ �)

. (55)

Substituting (34), (52)–(55) into (51) gives

�2
n(u)= const

[
H(u+ �̄)
H(u− �)

]2n
H 1−�(n) (u− b(n))H 1+�(n) (u+ b(n))

ei�m(n)u/K

×(H(u+ �̄)H(u+ �))2w−2a

H 2(u+ �̄)

×
∏m∗
j=1H

mj (1+	j )(u+ vj )Hmj (1−	j )(u− vj )∏2w
j=1H(u− uj )H(u+ uj )

= const

[
H(u+ �̄)
H(u− �)

]2n
H 2(u+ �(n)b(n))

ei�m̃(n)u/K



56 A.L. Lukashov, F. Peherstorfer / Journal of Approximation Theory 132 (2005) 42–71

×(H(u+ �̄)H(u+ �))2w−2a

H 2(u+ �̄)

×
∏m∗
j=1H

mj (1+	j )(u+ vj )Hmj (1−	j )(u− vj )∏2w
j=1H

2(u− uj )
, (56)

wherem̃(n) = m(n)−#{uj : Im uj = K ′}. By the ellipticity of�n and by (56)m̃(n) is even,
m̃(n) =: 2k(n) which implies (44) up to a constant multiplier.
To get (45) one needs to take into account the equality

1= lim
z→∞

Pn(z)

zn
= lim
u→�

1
2(�n(u)+ �n(−u))(
constH(u−�̄)H(u+�̄)

H(u−�)H(u+�)

)n
and that the constant in (55) can be easily determined from
(0) = ei�1.

From definition (49) of the function�n(u) it follows that it is a meromorphic function
of z = 
(u) on the Riemann surfaceS of the function

√
R(z). Then, as it is known,�n(u)

is elliptic. Writing down the conditions of ellipticity for�n(u) gives, with the help of (23),
relations (46), (47) and thatln − w2 is even.
Conversely, let conditions (46), (47) with evenln − w2 be satisfied. Then the function

�n(u), defined by (44), is elliptic. Hence it can be represented asp+√
Rq
r

,wherep, q, r are
polynomials. From (44) it follows that�n as a function ofzhas finite poles only at the zeros
ofW, and of the same order, hencer(z) = W(z). Multiplying �n(u) by�n(−u) gives

p2(z)− R(z)q2(z)
W2(z)

=C2
�,n

(
H(u− �̄)H(u+ �̄)
H(u− �)H(u+ �)

)n

×H(u− �(n)b(n))H(u+ �(n)b(n))

H(u− �̄)H(u+ �̄)
×(H(u− �̄)H(u+ �̄)H(u− �)H(u+ �))w−a

×
∏m∗
j=1H

mj (u− vj )Hmj (u+ vj )∏2w
j=1H(u− uj )H(u+ uj )

,

what is equal by (52)–(55) to

const
zn−a−1+wA(z)g(n)(z)

W(z)
= p2(z)− R(z)q2(z)

W2(z)
,

i.e.,

p2(z)

W(z)
− V (z)q2(z) = constzn−a−1+wA(z)g(n)(z). (57)

Hencep(z) = P̃ (z)W(z), whereP̃ (z) is a polynomial. Finally we get

�n(u) = P̃ (
(u))+
√
V (
(u))
W(
(u))

q(
(u)).
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By (44)�n(u) has a pole of multiplicityn atu = �, and�n(−u) has a pole of multiplicity
w − a < n atu = �, henceP̃ (
(u)) = 1

2(�n(u)+ �n(−u)) is a polynomial of degreen.
Comparing the degrees in (57) gives thatq is a polynomial of degreen + 2− 2v. Putting
P̃n := P̃ andQ̃n+2−2v := q (57) becomes

W(z)P̃ 2
n (z)− V (z)Q̃2

n+2−2v(z) = zn−(a+1−w)A(z)g̃(n)(z),

whereg̃(n) is a polynomial of degree 1. Using representations (49), (50) and (44) one gets
after the substitutionsu = ±vj , u = ±� the equalities(

V Q̃n+2−2v

)(k)
(zj ) = 	j

(√
RP̃n

)(k)
(zj )

for k = 0, . . . , mj − 1; j = 1, . . . ,2m∗,
V Q̃n+2−2v√

RP̃n

∣∣∣∣∣
z=0

= 1, V (0)Q̃∗
n+2−2v(0) =

√
R(0)P̃ ∗

n (0).

By Lemma1 P̃n is orthogonal with respect toL. Since for a positive definite functionalL
the orthogonal polynomials are unique up to a multiplicative constant, the uniqueness of
the solutions of systems (46) and (47) is proved.�

Corollary 4. LetA(�)bea trigonometric polynomialA ∈ �a,of form(5)which ispositive
on E and let� ∈ N/2 be such that� > a. Then the following assertions are equivalent.

(a) There exists a trigonometric polynomial

��(�) = A cos�� + B sin�� + · · ·
withA,B,∈ R, A2 + B2 
= 0 such that

max
�∈E

∣∣∣∣∣ ��(�)√A(�)

∣∣∣∣∣
= min
bi ,ci∈R

∣∣∣∣∣A cos�� + B sin�� + b1 cos(� − 1)�√A(�)

× c1 sin(� − 1)� + · · · + b[�] cos
(
� − 2

[ �
2

])
� + c[�] sin

(
� − 2

[ �
2

])
�√A(�)

∣∣∣∣∣
(58)

and all boundary points of E are extremal points with

��(�2j )√A(�2j )
= ��(�2j+1)√A(�2j+1)

, j = 1,2. (59)

(b) There exists a real trigonometric polynomial��−1 ∈ ��−1 and a real constantM� such
that

�2�(�)− R(�)�2
�−1(�) = M2

� A(�) (60)
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with

��(�j ) = (
√

R��−1)(�j ), j = 1, . . . , m∗. (61)

(c) L(z−jPn;A, 1,1)= 0 for j ∈ (0, n], where
Pn(e

i�) := ei����(�), n = 2�.

(d) For somel� ∈ N

(4� − 2a)Re� +
m∗∑
j=1

mj Revj = −l�K (62)

holds.

If any of those assertions holds then the minimal polynomial��(�) is given by the formula

��(�) = M�

2
(F2�(u)+ F2�(−u))e−i��, (63)

exp(i�) = 
(u),

F2�(u) = ε�ei�mu/K
(
H(u+ �̄)
H(u− �)

)2� ∏m∗
j=1H

mj (u+ vj )(
H(u+ �)H(u+ �̄)

)a , (64)

|ε�| = 1,m= 1
2

∑m∗
j=1 mj Im vj ∈ N.

Proof. The assertion is proved for the more general case of several arcs (with expressions
in terms of automorphic functions) in[12, Theorem 1]. We give a proof also here for the
sake of completeness.

(a)⇒(b) Since

{
1√A(�) ,

sin�√A(�) , . . . ,
cos(�−1)�√A(�)

}
(for an integer�) and{

sin�/2√A(�) ,
cos�/2√A(�) , . . . ,

cos(�−1)�√A(�)

}
(for a half-integer�) are Chebyshev systems onE by the

Chebyshev Alternation theorem we get that��/
√A has at least 2� − 2 alternation points

�j in the interior ofE. Put

��−1(�) = c
2�−2∏
j=1

sin((� − �j )/2) (65)

and note that�2�/A−M2
� has a double zero at any point�j , j = 1, . . . ,2�−2, and because

of (59) has a simple zero at any zero ofR(�). Hence, for a suitable constantc in (65),

�2�(�)
A(�) −M

2
� = R(�)�2

�−1(�)

A(�) ,

i.e. (60) is proved.
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Furthermore, it follows from (60) that in[d, d + 2�) \ E the inequality

|��(�)|√A(�) > M�

holds, hence the function

��(�)+
√

�2�(�)−M2
� A(�)

M�
√
A(�)

=: F�(�)√
A(�)

(66)

has onEmodulus 1 and on[d, d+2�)\Emodulus greater than 1. Furthermore, the function

P2�(z)+
√
P 2
2�(z)−M2

�A(z)

M�
√
A(z)

=: F�(z)√
A(z)

,

whereP2�(z) := ei����(�), z = ei�, has also modulus 1 forz ∈ �E. The functionF� is
algebraic and has no finite poles, it has as branch points ei�j , j = 1,2, 3,4, only, hence
F�(z) = P1(z) + √

R(z)P2(z), whereP1, P2 are polynomials. By (60) and (66) we have
F�(z) = P2�(z)+√

R(z)Q2n−2(z),whereQ2�−2(z) := ei(�−1)���−1(�). Let us normalize
the polynomialQ2�−2(z) in such a way thatF�(z) has a pole at∞1, where∞1 is the point
infinity in the first sheet of the Riemann surface of the functionw = √

R(z) associated
with C̄ \ �E. Since the variation of the argument ofF�(z) whenzgoes around�Ej in the

clockwise direction is equal to−2�q(�)j , whereq
(�)
j denotes the number of zeros of��(�)

onEj , the total variation of the argument ofF�(z) whenz goes around the boundary of
C̄ \ �E is equal to−4��. Hence by the Argument principle−2� = Z − P, whereZ,P
denotes the number of zeros and poles ofF� in C̄ \ �E, respectively. Taking into account
the choice of the branch of

√
R we haveP = 2�, henceZ = 0.

Since by (60)

(P2�(z)+
√
R(z)Q2�−2(z))(P2�(z)−

√
R(z)Q2�−2(z)) = M2

�A(z)z
2�−a, (67)

we get

P2�(zj ) = (
√
RQ2�−2)(zj ), j = 1, . . . , m∗ (68)

and (b) is proved.
(b)⇔(c). Follows by Lemma1.
(d)⇒(c). The proof is analogous to the proof of Corollary3. One applies Theorem2with

� = 1, p = 0,W ≡ 1,and takes into account the uniqueness of the orthogonal polynomials
which have maximal orthogonality (cf.[18]).
(c)⇒(d) PutP2�,Q2�−2 as in the proof of (a)⇒(b). Thenweget from (67) and (68) the de-

sired result by applying Theorem2. Formulas (63), (64) are also obtained
by Theorem2.
(b)⇒(a). The proof is analogous to the proof of[20, Corollary 3.2(a)]. One needs to take

into account also the variation of the argument of the functionF� from the proof of (a)⇒(b)
which can be determined easily by (64).�
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Remark 5. ForA ≡ 1 special cases of Corollary4 can be found in[9,24]; the connection
with orthogonal polynomials was discovered in[20] for any number of arcs even. For
E = [0, 2�] the problem was considered by Szegő[30]. Concerning algebraic analogues
see also[14,15].

4. Behaviour of zeros

Let S1 andS2 be neighbourhoods of the arcs�E1 and�E2, respectively. For technical
reasons it is more convenient to take them as images of the stripsS�

1 andS�
2 under the map

x = 
(u), where

S�
1 = {−ε < Reu < 0,−K ′ < Im u < K ′}

and

S�
2 = {−K < Reu < −K + ε,−K ′ < Im u < K ′}.

We need also the notations

S�
1 = {−ε < Reu�0,−K ′ < Im u < K ′}

and

S�
2 = {−K�Reu < −K + ε,−K ′ < Im u < K ′}.

Theorem 6. LetL be positive definite,n�a + 2+ v. Then the number of zerosk(1)n and
k
(2)
n of the polynomialPn in S1 andS2 are given for sufficiently large n by the formulas

k(1)n = n− 1

2
(ln + �n(1− �(n)))−

m∗∑
j=1

1− 	j
2

mj − 1− �(n)

2
+ w − w1

2

and

k(2)n = 1

2
(ln − �n(1− �(n))− w2),

where�n = 1 if b(n) ∈ S�
1 and�n = 0 if b(n) /∈ S�

1 ; analogously�n = 1 if b(n) ∈ S�
2 and

�n = 0 if b(n) /∈ S�
2 . Let us point out thatb(n), ln and�(n) are given uniquely by(46)and

(47) (taking into account the convention from Corollary3).

Proof. First of all let us note that because of the positive definiteness of the functionalL the
number� from Lemma1 is equal to 0. Furthermore, let us show thatp = 0, i.e.,Pn(0) 
= 0.
Indeed, assume thatp = 1 then it follows by (25) thatQn+2−2v(0) = 0. Dividing relation
(25) by z2 one gets that the polynomialPn−1(z) := Pn(z)/z is orthogonal with respect to
L for j ∈ (0, n − 1] and thus�g(n) = 0, which is by Theorem2 equivalent to�(n) = 0.
But by Corollary3 �(n) ∈ {−1,1}which is a contradiction.
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Thus formula (30) can be written as follows:

�n(
(u))= ce−i�m(n)u/K
[
H(u+ �)
H(u− �)

]n+w−a [
H(u+ �̄)

H(u− �̄)

]n+w−a−1 m∗∏
j=1

×
[
H(u+ vj )
H(u− vj )

]	jmj
[
H
(
u+ b(n))

H(u− b(n))

]�(n)

. (69)

Now we can determine easily all poles of�n(
(u)), naturally they coincide with the poles
of 1+�n(
(u)), and are of the same order. In particular, by (69) 1+�n(
(u)) has 2n+2w
poles in the parallelogram of periodsP.
First let us prove the statement for the case:

�(n) = 1 and W(ei�1)W(ei�2) 
= 0. (70)

We suppose thatε > 0 is sufficiently small and such that there are novj ’s in S�
1 and in

S�
2 and nob(n)’s on�S�

1 or �S�
2 .

We claim that
A: A point z, |z| < 1, is a zero ofPn if and only if it is a zero of 1+ �n(z).

Let us proof claim A. From (28) and (29) it follows that

1+ �n(z) = 2Pn(z)(W(z)Pn(z)+√
R(z)Qn+2−2v(z))

zn−(a+1−w)A(z)g(n)(z)
.

Comparing it with definition (34) of�n(z) it can also be written in the form

1+ �n(z) = 2Pn(z)�n(z)W(z)

Pn(z)+
√
V (z)
W(z)

Qn+2−2v(z)

. (71)

Becauseof thepositivedefinitenessofLandbyPeherstorfer andSteinbauer[18,Proposition
2.3] the polynomialsPn andQn+2−2v have no common zeros, hence by (71) all zeros ofPn
will be zeros of 1+ �n(z). By the positive definiteness ofL Pn(z) hasn zeros in|z| < 1.
Hence since
(u) is evenPn(
(u)) hasn zeros in

�+ = {u : −K < Reu < 0, 0< Im u < K ′} (72)

andn zeros in−�+. Thus 1+�n(
(u)) has 2n zeros at the zeros ofPn(
(u)).Moreover
all zeros ofW(
(u))will be zeros of 1+�n(
(u)) also.Altogether we found 2n+2w zeros
of 1+�n(
(u)). By the ellipticity of 1+�n(
(u)) the number of zeros and poles inP is
the same. Since we have shown at the beginning of the proof that 1+�n(
(u)) has 2n+2w
poles inP, the zeros ofPn(
(u)) and ofW(
(u)) are the only zeros of 1+�n(
(u)) inP.
Hence claimA is proved. In particular, the number of zeros ofPn(
(u))andof 1+�n(
(u))
in S�

1 is equal. Furthermore, as it is easily seen from (69), 1+ �n(
(u)) has one pole in
S�
1 , if b(n) is in S�

1 (recall that�(n) = 1), hence by the Argument principle

2�(k1n − �n) = var argu∈�S�
1
(1+ �n(
(u))), (73)
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where�S�
1 is passed around counterclockwise. Because of the ellipticity of the function

1+ �n(
(u)) we have

var argu∈�S�
1
(1+ �n(
(u)))= var arg

u∈S(1)1
(1+ �n(
(u)))

−var arg
u∈S(2)1

(1+ �n(
(u))) =: A1 − A2, (74)

whereS(1)1 = {u : Reu = 0,−K ′� Im u�K ′}, S(2)1 = {u : Reu = −ε,−K ′� Im u
�K ′}.
To computeA1 we will describe the range of the function�n(
(u)) and compare it with

the range of the function 1+ �n(
(u)), whenu varies alongS(1)1 .

For that reason let us write relation (69) in the form

�n(
(u)) = fn(u)hn(u), (75)

where

fn(u) = c
(
H(u+ �)H(u+ �̄)

H(u− �)H(u− �̄)

)n−a−1+w m∗∏
j=1

[
H(u+ v̄j )
H(u− vj )

]	jmj
(76)

and

hn(u)= e−i�m(n)u/K H(u+ �)H
(
u+ b(n))

H(u− �)H
(
u− b(n))

×(−e−i�u/K)
∑
j∈J 	jmje−i�

∑
j∈J 	jRevj /K. (77)

From LemmaA.1 it follows that

|fn(u)| = 1 for u ∈ S(1)1 , and|fn(u)| > 1 for u ∈ S(2)1 . (78)

Furthermore, foru ∈ S(1)1 we have by straightforward calculations

|hn(u)hn(−u)| = 1. (79)

Recall also (cf. (36)) that

�n(
(−u))�n(
(u)) ≡ 1. (80)

Now it follows from (75) that

var arg
u∈S(1)1

�n(
(u)) = var arg
u∈S(1)1

fn(
(u))+ var arg
u∈S(1)1

hn(
(u))

=:A11+ A12. (81)

To computeA11 one has to observe firstly, that by LemmaA.1 the function

�(u, �) := arg
H(u+ �̄)
H(u− �)

is equal to the harmonic conjugate of the Green’s functiongC\�E (
(u),∞) =: g(u) hence
for u ∈ [−iK ′, iK ′]

��
�y

= �g
�x
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(by the Cauchy–Riemann conditions, withu = x + iy), and it is obvious that�g�x < 0 for

u ∈ [−iK ′, iK ′] and foru ∈ [−K − iK ′,−K + iK ′] we have�g
�x > 0. So�(u, �) is strictly

decreasing alongu ∈ [−iK ′, iK ′] and alongu ∈ [−K + iK ′,−K − iK ′], hence

var argu∈[−iK ′,iK ′]
H(u+ �̄)
H(u− �)

= arg

(
H(iK ′ + �̄)
H(iK ′ − �)

· H(−iK ′ − �)

H(−iK ′ + �̄)

)

+2�� = −2�Re�/K + 2��, (82)

where−� ∈ N and the last equality follows by (23). But (82) holds for any� ∈ �, hence
by continuity with respect to� for Im � = 0 the relation

− 2��/K + 2�� = var argu∈[−iK ′,iK ′]
H(u+ �)
H(u− �)

(83)

holds. In an analogous way

var argu∈[−K+iK ′,−K−iK ′]
H(u+ �̄)
H(u− �)

= 2�Re�/K + 2��, (84)

with −� ∈ N0, and for Im� = 0

2��/K + 2�� = var argu∈[−K+iK ′,−K−iK ′]
H(u+ �)
H(u− �)

. (85)

The variations of the argument of (83) and (85) were computed in[16], but for the sake of
completeness let us give another proof. Adding (82) and (84) one gets

var argu∈[−K+iK ′,−K−iK ′]∪[−iK ′,iK ′]
H(u+ �̄)
H(u− �)

= 2(� + �)�

and that the variation of the argument is equal to−2� because of the Argument principle.
Hence� = −1,� = 0, and

var argu∈[−iK ′,iK ′]
H(u+ �̄)
H(u− �)

= −2�Re�/K − 2�, (86)

var argu∈[−K+iK ′,−K−iK ′]
H(u+ �̄)
H(u− �)

= 2�Re�/K. (87)

Let usobserve, (87)with thehelpof[34, formula (4.3)]givesus (101) immediately.Similarly
one computes

var argu∈[−iK ′,iK ′]
H(u+ v̄j )
H(u− vj ) = −2�Revj /K − 2�,

and

var argu∈[−K+iK ′,−K−iK ′]
H(u+ v̄j )
H(u− vj ) = 2�Revj /K.
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Thus we get by (76), (77), (81), (86) and (87)

A11= (n− a − 1+ w)(−2�(2Re�/K + 2))

−2�
m∗∑
j=1

	jmj (Revj /K + 1) (88)

and

A12 = −2�(Re� + Reb(n))/K − 4�. (89)

Now we are ready to study the ranges(C) of the function�n(
(u)) and to compare it with
the range(C̃) of the function 1+ �n(
(u)) whenu varies alongS(1)1 .

It was mentioned before that the function

�(u, �) := arg
H(u+ �̄)
H(u− �)

is strictly decreasing whenu varies alongS(1)1 . The function

arg
H(u+ �)

H(u− �̄)

has an analogous property, hence by (75), (76) for sufficiently largen the argument of
�n(
(u)) is strictlymonotonically decreasingwhenuvaries alongS(1)1 .Nowusing relation
(80) it follows that the curveC consists of two closed curves with end points 1 (recall the
suppositionW(ei�1)W(ei�2) 
= 0) such that the second one is the image of the first one
under reflection with respect to the unit circle and to the real axis. SinceC does not run
through−1, we get

var arg
u∈S(1)1 =[−iK ′,iK ′] �n(
(u))

= 2var argu∈[−iK ′,iK ′] (1+ �n(
(u))) = 2A1. (90)

Next let us show that forn > N0

|�n(
(u))| > 1 for u ∈ S(2)1 . (91)

Indeed, since by LemmaA.1∣∣∣∣∣H(u+ �)H(u+ �̄)

H(u− �)H(u− �̄)

∣∣∣∣∣ > 1 onu ∈ S(2)1

it follows that there exists anN0 such that for anyn ∈ N, n > N0,

inf
u∈S(2)1

∣∣∣∣∣H(u+ �)H(u+ �̄)

H(u− �)H(u− �̄)

∣∣∣∣∣
n−a−1+w

�qnN0
sup
u∈S(2)1

∣∣∣∣∣∣
m∗∏
j=1

[
H(u+ v̄j )
H(u− vj )

]	jmj
∣∣∣∣∣∣
/

|hn(u)|, (92)

with qN0 > 1,which proves in view of (75) and (76) the claim.
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Thus

A2 = var arg
u∈S(2)1

�n(
(u)) = 2��n + var arg
u∈S(1)1

�n(
(u)) = 2��n − 2�ln,

where the first equality follows by definition (74) of A2 and (91), the second one uses the
ellipticity of �n(
(u)) and the assumption�(n) = 1, and the third equality follows by (81),
(88), (89) and (32). Hence

A2 = 2��n − 2�ln. (93)

Finally we get with the help of (73), (74), (81)–(88), (90) that

k(1)n = 1

K


(n− a − 1)Re� + 1

2

m∗∑
j=1

	jmjRevj + 1

2
(Re� + Reb(n))




+n− a + 1

2

m∗∑
j=1

	jmj . which is the assertion under assumption(70).

If �(n) = −1 andW(ei�1)W(ei�2) 
= 0 then in (73)�n should be omitted, and in (93) it
should appear with minus sign.
For the calculation ofk(1)n in the caseW(ei�1) 
= 0,W(ei�2) = 0, one cannot repeat the

considerations from above without any modification since the curve(C̃) goes through the
point 0. Hence one needs to take themodified “interval”Jε̃ = [−iK ′,−iε̃]∪[iε̃, iK ′]∪C−

ε̃
,

whereCε̃ is the circumference with centeru = 0 and radius̃ε, andC−
ε̃
, C+
ε̃
are its left- and

right-hand halves, respectively.
LetB,D,O denote the imagesof the points−iε̃, iε̃, 0 under the function�n(
(u)).Note

O is the point−1. Since the variation of the argument of�n(
(u)) (for n large enough)
is strictly decreasing along[−iε̃, iε̃], the curveBOD is such that�2 < argD < �,� <
argB < 3�

2 . Now the variation of the argument of the function 1+ �n(
(u)) along the
circumferenceCε̃ is equal to 2� (recall that�n(
(0)) = −1 sinceW(
(0)) 
= 0).Thus the
image ofCε̃ under the function�n(
(u)) is such that the point−1 lies inside of�n(
(Cε̃))
and the curve�n(
(u)) goes counterclockwise aroundOwhenu varies counterclockwise
aroundu = 0 alongCε̃. Hence the image ofC−

ε̃
will be such thatO is at the right-hand

side of�n(
(C
−
ε̃
)). Finally, we get that the variation of the argument of�n(
(u)) along

[0, iK ′] is equal to−(2�+1)�,� ∈ N0, because of�n(
(0)) = −1 and�n(
(iK ′)) = 1.
Thus the considerations give finally

var argu∈Jε̃ (1+ �n(
(u))) = −2(� + 1)�.

The variation of the argument of the function 1+ �n(
(u)) along�S�
2 is calculated in an

analogous way.
Concerning thecasesReb(n) = 0andReb(n) = −K.Letusconsider thecaseReb(n) = 0

for instance. Then one needs to take the modified “interval"

J̃ε̃ = [−iK ′,−i(Im � +K ′ + ε̃)] ∪ [−i(Im � +K ′ − ε̃), i(Im � +K ′ − ε̃)]
∪ [i(Im � +K ′ + ε̃), iK ′] ∪ C̃+

ε̃
∪ (−C̃−

ε̃
),
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whereC̃+
ε̃
is the circumference with centeru = i(Im �+K ′) and radius̃ε, andC̃−

ε̃
, C̃+
ε̃
are

its left- and right-hand halves, respectively. Then the variation of the argument of�n(
(u))
alongJ̃ε̃ is computed in the same way as above, and

var arg
u∈J̃ε̃ (1+ �n(
(u))) = var arg

u∈J̃ε̃ �n(
(u)).

Other cases are considered in the same manner.�

Theorem 7. Let the functionalL be positive definite,let zj,n, j = 1, . . . , n, be the zeros
of Pn and let Z be the set of all accumulation points of(zj,n)

n,∞
j=1,n=1. Furthermore,put

S = 
(L), L = {u ∈ � : Im u = Im � +K ′}, � = {ei�j : 	j = −1}. (94)

Then the following statements hold:

(a) Z ⊆ �E ∪ � ∪ S, whereZ ∩ �E = �E andZ ∩ � = �.
(b) Z ∩ S = S and thusZ = �E ∪ � ∪ S if the harmonic measure�2(∞) of �E2 is an

irrational number.
(c) If �2(∞) is rational, thenN := Z ∩ S is a finite set andN = {|z| < 1}∩





 1

K


Re�(2n+ 2w − 2a − 1)+

m∗∑
j=1

	jmjRevj




+i(Im � +K ′) : n ∈ N
}

Proof. First let us recall (see claim A in the proof of Theorem6) thatPn(
(u)) has a zero
at u ∈ int� if and only if �n(
(u)) = −1.With the help of relation (91) and by the
continuity of�n(
(u)) it follows by representation (69) that each mass-point
(vj ) of L
is an accumulation point of zeros of

(
Pn(
(u))

)
since	j = −1 and thusvj is a zero of

�n(
(u)). Furthermore, it follows by the same reasons with the help of (46) that other
accumulation points of zeros of(Pn) in C \E,more precisely in{|z|�1} \E, sincePn(z)
has all zeros in{|z| < 1},may appear at accumulation points of(
(b(n))), b(n) ∈ int�+,
only, where an accumulation pointb∗ ∈ �̄+ of (b(n)), i.e.,b∗ = limk→∞ b(nk), is a limit
point of zeros of(Pnk (
(u))) if and only if �(nk) = −1 for k�k0. Recall�+ is defined in
(72). Next let us show thatb∗ ∈ L. Indeed, putting� = m(n) +∑m∗

j=1 	jmj Im vj /K ′, it
follows from (46) that there are two possibilities for� : either� = 1 or � = 0. Furthermore,
for �(n) = −1

Im b(n) = Im � +K ′ for � = 1, and Imb(n) = Im � for � = 0 (95)

and for�(n) = 1

Im b(n) = −Im � −K ′ for � = 1, and Imb(n) = −Im � for � = 0. (96)

Now from limk→∞ b(nk) = b∗ ∈ �+ and�(nk) = −1 for k�k0 we obtain that the first
relation in (95), i.e.,� = 1 holds. Thus the first part of part (a) is proved.
The statementZ ∩ �E = �E follows by (3). It is also known, see e.g.[25,8, Theorem

9.2] that each isolated mass point attracts exactly one zero ofPn. This can be proved also
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in the following way: taking into consideration the facts thatmj = 1, sinceL is positive
definite, and that there are nob(n)’s in the neighbourhood of mass pointsvj for sufficiently
largen, we have

var argu∈B �n(
(u)) = var argu∈B(1+ �n(
(u))), (97)

whereB is a small circumference with centeru = vj . But the left hand side expression in
(97) is equal to 2�i because of (30), hence the number of zeros ofPn in the neighbourhood
is equal to 1 proving the assertion.
Concerning part (b), let us recall Chebyshev’s theorem: If
, 0 < 
 < 1, is an irrational

number, then for anyx ∈ R and for anyε > 0 it is possible to findn ∈ N andm ∈ Z such
that

|n
 −m− x| < ε. (98)

Put
 = −Re�
K

and

x = (w − a − 1/2)
Re�
K

−
m∗∑
j=1

	jmj
Revj
2K

− �b
2K

− w2/2,

where� ∈ {−1,1} andb,−K < b < 0, are arbitrary. Then for anyε > 0 it is possible to
find n ∈ N andm ∈ Z such that (98) holds. By (47)

n
= (w − a − 1/2)
Re�
K

+
m∗∑
j=1

	jmj
Revj
2K

+ �(n)Reb(n)

2K

+w2/2− (ln − w2)/2.

Inserting this in (98) gives∣∣∣∣∣ �b
2K

− �(n)Reb(n)

2K
− ((ln − w2)/2−m)

∣∣∣∣∣ < ε.
Since �b

2K ∈ (−1/2, 1/2) and �(n)Reb(n)
2K ∈ [−1/2, 1/2], we have (ln − w2)/2= m, and∣∣∣∣∣ �b

2K
− �(n)Reb(n)

2K

∣∣∣∣∣ < ε.
Hence for anyb ∈ (−K, 0) and� = −1 there is a subsequence(nk) of the natural numbers
such thatb(nk) satisfying (47) and (46) with�(nk) = −1 (recall (95) and the fact that� = 1)
tends tob + i(Im � +K ′). Hence (b) is proved.
Part (c) is proved in the same manner by taking into account that there exists only a

finite number of possible solutions of (47) for alln ∈ N and that only for�(n) = −1 these
solutions will attract zeros ofPn. �

Remark 8. Part (c) can be proved (with description of the setN in other terms) by com-
bination of[21, Theorem 3.3],[20, Remark 3.1, Theorem 4.2]and the corrected version of



68 A.L. Lukashov, F. Peherstorfer / Journal of Approximation Theory 132 (2005) 42–71

[22, Theorem 4.2], i.e., in (ii) and (iii) of Theorem 4.2 put� = 1 and in (iv) addR◦(0) = 1,
(compare also[11]).

Remark 9. Let us note that Tomchuk[32] on p. 2 beforeTheorem2 claims that the function
at the right-hand side in (49), denoted by him byp(z,

√
R(z)), has all zeros in|z| < 1.

We would like to mention that the claim is not correct. Indeed let us assume that the claim
is correct. Then the function�n(u) from (49) and (44) (see the introduction of
 at the
end of Section2) has all zeros in the upper half of�, i.e. in�+ = (−K, 0) × (0, iK ′)
or in −�+. Moreover by (44)−�(n)b(n) ∈ ±�+ for n�a + 1+ v. But let us show that
this is impossible, because there always exist a subsequence(nk) such that�(nk) = 1 and
b(nk) ∈ [−K, 0] × [−iK ′, 0] if the functionalL is positive definite. Indeed, by (48) we can
choose a sequence(nk) such that for anyk ∈ N �(nk) = 1. Now it follows from (35) and
from [19, Theorems 2.1, 2.2]that

�1,n(z) =
P 2
n (z)

(
F(z)+ �n(z)

Pn(z)

)2
A(z)V (z)

zn+a+1−wg(n)(z)
, (99)

where

F(z) = L
(
x + z
x − z ;A,W, 	

)

is the Caratheodory function associated with the functionalL and�n(z) (do not mix with
�n fromCorollary3) are the polynomials of second kind. Since�1,n(
(u)) = �n(
(−u))
the functions�1,nk (
(u)) have a zero atu = b(nk) by (30). Butg(nk)(
(u)) also has a zero
atu = b(nk), hence by (99)

F(
(u))+ �nk (
(u))
Pnk (
(u))

has a zero atu = b(nk). Now by[7, Theorems 12.1, 12.2]the functionF(z)+ �n(z)
Pn(z)

has no

zeros inside the unit circle, hence|
(b(nk))|�1, andb(nk) ∈ [−K, 0] × [−iK ′, 0].

Appendix A.

Lemma A.1. (a)The Green’s function g of̄C\�E with respect to the pointc0 ∈ C̄\�E , is
given in terms of Jacobian elliptic functions by the relation

gC̄\�E (z, c0) = log

∣∣∣∣H(u+ �̄)
H(u− �)

∣∣∣∣ , (100)

wherez = 
(u),
 is given by(22)andc0 = 
(�). In particular,∞ = 
(�).
(b)The harmonic measure of�E2 at z = ∞ is given by

�2(∞) = −Re�
K
. (101)

Note that�1(∞)+ �2(∞) = 1.
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(c)The capacity of�E is as follows

� = cap(�E) =
∣∣∣∣H(2i Im �)
H(2�)

∣∣∣∣ . (102)

Proof. (a) The functiong(z, c0) defined by (100) is harmonic on̄C\(�E ∪ {c0}) since it is
a single-valued real part of the multi-valued analytic function

log
H(u+ �̄)
H(u− �)

,

which follows by the facts that

H(u+ 2iK ′ + �̄)
H(u+ 2iK ′ − �)

: H(u+ �̄)
H(u− �)

= e−2i�Re�/K

and that

H(u+ 2K + �̄)
H(u+ 2K − �)

: H(u+ �̄)
H(u− �)

= 1.

Furthermore, for� 
= � (i.e. c0 
= ∞)

log

∣∣∣∣H(u+ �̄)
H(u− �)

∣∣∣∣+ log |u− �| = log

∣∣∣∣H(u+ �̄)
H(u− �)

· (u− �)

∣∣∣∣ (103)

is a bounded function in a neighbourhood of�, henceg(z, c0) = − log |z − c0| + O(1),
asz → c0. Analogouslyg(z,∞) = log |z| + O(1), asz → ∞. Moreover, for Reu =
0,−K ′� Im u�K ′,∣∣∣∣H(u+ �̄)

H(u− �)

∣∣∣∣
2

= H(u+ �̄)
H(u− �)

H(ū+ �)
H(ū− �̄)

= 1 (104)

and analogously (104) holds for Reu = −K,−K ′� Im u�K ′.Hence (100) is the Green’s
function.
(c) From the definition of capacity it follows that

� = e−�, � = lim
z→∞ g(z,∞)− log |z|. (105)

Since by (22) and the Representation theorem for elliptic functions

|
(u)| =
∣∣∣∣∣H(u− �̄)H(u+ �̄)
H(u− �)H(u+ �)

∣∣∣∣∣
relations (100) and (105) give the desired result.
(b) is given in Theorem6. �

For another representation of the Green’s function see[22].
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